Skip to main content
Log in

A Novel Numerical Method for Solving Volterra Integro-Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari technique is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santo Pedro, F., de Barros, L.C., Esmi, E.: Population growth model via interactive fuzzy differential equation. Inf. Sci. 481, 160–173 (2019)

    MathSciNet  Google Scholar 

  2. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Volterra, V.: Theory of Functionals and of Integral and Integro-differential Equations. Dover, New York (1959)

    MATH  Google Scholar 

  4. Volterra, V.: Lecons sur la theorie mathematique de la luttle pour la vie Gauthier–Villars. Paris (1931)

  5. Lakshmikantham, V., Rao, M.R.M.: Theory of Integro-Differential Equations. Gordon and Breach Science Publishers, Amsterdam (1995)

    MATH  Google Scholar 

  6. O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integro-differential Equations. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  7. Kostic, M.: Abstract Volterra Integro-Differential Equations. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  8. Matthys, J.: A-stable linear multistep methods for Volterra Integro-differential equations. Numer. Math. 27, 85–94 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Brunner, H.: High-order methods for the numerical solution of Volterra integro-differential equations. J. Comput. Appl. Math. 15, 301–309 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Day, J.T.: Note on the numerical solution of integro-differential equations. Comput. J. 9(4), 394–395 (1967)

    MATH  Google Scholar 

  11. Linz, P.: A method for solving nonlinear Volterra integral equations of the second kind. Math. Comput. 23(107), 595–599 (1969)

    MathSciNet  MATH  Google Scholar 

  12. Wolfe, M.A., Phillips, G.M.: Some methods for the solution of non-singular Volterra integro-differential equations. Comput. J. 11(3), 334–336 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236(9), 2367–2377 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Caraus, I., Al Faqih, F.: Approximate solution of singular integro-differential equations in generalized Holder spaces. Numer. Algoritm. 45(1–4), 205–215 (2007)

    MATH  Google Scholar 

  15. Saeedi, L., Tari, A., Masuleh, S.H.M.: Numerical solution of a class of the nonlinear Volterra integro-differential equations. J. Appl. Math. Inform. 31, 65–77 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Filiz, A.: Fourth-Order Robust numerical method for integro-differential equations. Asian J. Fuzzy Appl. Math. 1(1), 28–33 (2013)

    Google Scholar 

  17. Mohamed, N.A., Majid, Z.A.: Multistep block method for solving volterra integro-differential equations. Malays. J. Math. Sci. 10, 33–48 (2016)

    Google Scholar 

  18. Baharum, N.A., Abdul, M.Z., Senu, N.: Solving Volterra integrodifferential equations via diagonally implicit multistep block method. Int. J. Math. Math. Sci. 2018, 1–10 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Brunner, H., Lambert, J.D.: Stability of numerical methods for Volterra integro-differential equations. Computing 12, 75–89 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Baker, C.T.H., Makroglou, A., Short, E.: Regions of stability in the numerical treatment of Volterra integro-differential equations. SIAM J. Numer. Anal. 16(6), 890–910 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Brunner, H.: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 8, 213–229 (1982)

    MathSciNet  MATH  Google Scholar 

  22. Bloom, F.: Ill-posed Problems for Integro-differential Equations in Mechanics and Electromagnetic Theory. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  23. Kastenberg, W.E., Chambre, P.L.: On the stability of nonlinear space dependent reactor kinetics. Nucl. Sci. Eng. 31, 67–79 (1968)

    Google Scholar 

  24. MacCamy, R.C.: A model for one dimensional nonlinear viscoelasticity. Q. Appl. Math. 35, 21–33 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Narain, A., Joseph, D.: Classification of linear viscoelastic solids based on a failure criterion. J. Elast. 14, 19–26 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Hrusa, W.: Global existence and asymptotic stability for semilinear hyperbolic Volterra equation with large initial data. SIAM J. Math. Anal. 16, 110–134 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Pruss, J.: Positivity and regularity of hyperbolic Volterra equations in Banach spaces. Math. Ann. 279, 317–344 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Capasso, V.: Asymptotic stability for an integrodifferential reaction diffusion system. J. Math. Anal. Appl. 103, 575–588 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Daftardar-Gejji, V., Jafari, H.: An iterative method for solving non linear functional equations. J. Math. Anal. Appl. 316, 753–763 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Daftardar-Gejji, V., Bhalekar, S.: Solving fractional diffusion-wave equations using the New Iterative Method. Frac. Calc. Appl. Anal. 11, 193–202 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Bhalekar, S., Daftardar-Gejji, V.: New iterative method: Application to partial differential equations. Appl. Math. Comput. 203, 778–783 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Daftardar-Gejji, V., Bhalekar, S.: Solving fractional boundary value problems with Dirichlet boundary conditions. Comput. Math. Appl. 59, 1801–1809 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Mohyud-Din, S.T., Yildirim, A., Hosseini, M.M.: An iterative algorithm for fifth-order boundary value problems. World Appl. Sci. J. 8, 531–535 (2010)

    Google Scholar 

  34. Bhalekar, S., Daftardar-Gejji, V.: Solving evolution equations using a new iterative method. Numer. Methods Partial Differ. Equ. 26, 906–916 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Bhalekar, S., Daftardar-Gejji, V.: Solving a system of nonlinear functional equations using revised new iterative method. Int. J. Compu. Math. Sci. 6, 127–131 (2012)

    MATH  Google Scholar 

  36. Patade, J., Bhalekar, S.: Approximate analytical solutions of Newell–Whitehead–Segel equation using a new iterative method. World J. Modell. Simul. 11(2), 94–103 (2015)

    Google Scholar 

  37. Bhalekar, S., Patade, J.: Series solution of the pantograph equation and its properties. Fractal Fract. 1(1), 16 (2017)

    Google Scholar 

  38. Bhalekar, S., Patade, J.: Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. 2(9), 1–17 (2017)

    Google Scholar 

  39. Bhalekar, S., Patade, J.: Analytical solutions of nonlinear equations with proportional delays. Appl. Comput. Math. 15(3), 331–345 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Patade, J., Bhalekar, S.: On analytical solution of Ambartsumian equation. Natl. Acad. Sci. Lett. 40(4), 291–293 (2017)

    MathSciNet  Google Scholar 

  41. Bhalekar, S., Daftardar-Gejji, V.: Solving fractional order logistic equation using a new iterative method. Int. J. Differ. Equ. 2010 (Art. ID 975829), (2012)

  42. Bhalekar, S., Daftardar-Gejji, V.: Numeric-analytic solutions of dynamical systems using a new iterative method. J. Appl. Nonlin. Dyn. 1, 141–158 (2012)

    MATH  Google Scholar 

  43. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: A new predictor-corrector method for fractional differential equations. Appl. Math. Comput. 244, 158–182 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: Solving fractional delay differential equations: a new approach. Fract. Calc. Appl. Anal. 16, 400–418 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Patade, J., Bhalekar, S.: A new numerical method based on Daftardar-Gejji and Jafari technique for solving differential equations. World J. Modell. Simul. 11, 256–271 (2015)

    Google Scholar 

  46. Bhalekar, S., Daftardar-Gejji, V.: Convergence of the new iterative method. Int. J. Differ. Equ. 2011, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Jain, M.K.: Numerical Methods for Scientific and Engineering Computation. New Age International, New Delhi (2012)

    Google Scholar 

  48. Elaydi, S.: An Introduction to Difference Equations. Springer, Berlin (2005)

    MATH  Google Scholar 

  49. Edwards, J.T., Ford, N.J., Roberts, J.A.: Bifurcations in numerical methods for Volterra integro-differential equations. Int. J. Bifurc. Chaos 13(11), 3255–3271 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Bhalekar acknowledges the Science and Engineering Research Board (SERB), New Delhi, India for the Research Grant (Ref. MTR/2017/000068) under Mathematical Research Impact Centric Support (MATRICS) Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Bhalekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We provide software package based on Mathematica-10 to solve VIDEs using numerical method. This software is used for solving VIDEs of the form (38). One has to provide the value of f(xy) and K(xty) in first two windows, initial condition \(y_0\), step size h and number of steps n in third, fourth and fifth windows respectively. The last window gives required solution curve. We solve Eq. (37) using this software package as shown in following Fig. 

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patade, J., Bhalekar, S. A Novel Numerical Method for Solving Volterra Integro-Differential Equations. Int. J. Appl. Comput. Math 6, 7 (2020). https://doi.org/10.1007/s40819-019-0762-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0762-4

Keywords

Navigation