Skip to main content
Log in

A New Approximate Solution for a Generalized Nonlinear Oscillator

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The equivalent linearization method based on weighted averaging is employed to obtain a approximate solution for a generalized nonlinear oscillator given in the form of \( \ddot{u} + \alpha u + \beta u^{m} + \frac{{\gamma u^{n} }}{{\mu + \delta u^{p} }} = 0. \) The amplitude–frequency relationship of oscillation is given in a closed-form. Accuracy of the approximate solution is verified by comparing the obtained solution with the numerical solution using the 4th-order Runge–Kutta method. Specifically, the obtained results for some special cases such as cubic-, quintic-, seventh order-Duffing oscillators, Duffing-harmonic oscillator, nonlinear oscillator with fractional nonlinearity are compared with the results achieved by the other approximate methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liao, S.: Homotopy analysis method and its application [thesis], Shanghai Jiao Tong University, Shanghai (1992)

  2. He, J.H.: Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parametrized perturbation technique. Commun. Nonlinear Sci. Numer. Simul. 4(1), 81–83 (1999)

    MathSciNet  MATH  Google Scholar 

  3. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999)

    MathSciNet  MATH  Google Scholar 

  4. He, J.H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B (IJMPB) 22(21), 3487–3578 (2008)

    MATH  Google Scholar 

  5. He, J.H.: Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 29(2–3), 107–111 (2002)

    MATH  Google Scholar 

  6. He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34(5), 1430–1439 (2007)

    MathSciNet  MATH  Google Scholar 

  7. He, J.H.: Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 374(23), 2312–2314 (2010)

    MathSciNet  MATH  Google Scholar 

  8. He, J.H.: Comment on He’s frequency formulation for nonlinear oscillators. Eur. J. Phys. 29, L1–L4 (2008)

    Google Scholar 

  9. He, J.H.: An improved amplitude–frequency formulation for nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 211–212 (2008)

    Google Scholar 

  10. Caughey, T.K.: Equivalent linearization technique. J. Acoust. Soc. Am. 35, 1706–1711 (1963)

    MathSciNet  Google Scholar 

  11. Kargarnovin, M.H., Jafari-Talookolaei, R.A.: Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories. Acta Mech. 212, 199 (2010)

    MATH  Google Scholar 

  12. Samadani, F., Moradweysi, P., Ansari, R., Hosseini, K., Darvizeh, A.: Application of homotopy analysis method for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler–Bernoulli beam model. Zeitschrift für Naturforschung A 72(12), 1093–1104 (2017)

    Google Scholar 

  13. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Google Scholar 

  14. Hayat, T., Khan, M.I., Qayyum, S., Alsaedi, A.: Entropy generation in flow with silver and copper nanoparticles. Colloids Surf. A 539, 335–346 (2018)

    Google Scholar 

  15. Qiu, Z., Wang, X.: Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int. J. Solids Struct. 42(18–19), 4958–4970 (2005)

    MATH  Google Scholar 

  16. Jimenez-Triana, A., Chen, G., Gauthier, A.: A parameter-perturbation method for chaos control to stabilizing UPOs. IEEE Trans. Circuits Syst. II Express Briefs 62(4), 407–411 (2015)

    Google Scholar 

  17. Yıldırım, A.: He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. Int. J. Comput. Math. 87(13), 2998–3006 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hieu, D.V., Thoa, N.T.K., Duy, L.Q.: Analysis of nonlinear oscillator arising in the microelectromechanical system by using the parameter expansion and equivalent linearization methods. Int. J. Eng. Technol. 7(2), 597–604 (2018)

    Google Scholar 

  19. Kaya, M.O., Altay Demirbağ, S.: Application of parameter expansion method to the generalized nonlinear discontinuity equation. Chaos Solitons Fractals 42(4), 1967–1973 (2009)

    MATH  Google Scholar 

  20. Simsek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Simsek, M.: Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 112(1), 264–272 (2014)

    Google Scholar 

  22. Hieu, D.V.: Postbuckling and free nonlinear vibration of microbeams based on nonlinear elastic foundation. Math. Probl. Eng. 2018, 1031237 (2018)

    MathSciNet  Google Scholar 

  23. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R., Darabi, M.A.: Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014)

    Google Scholar 

  24. Simsek, M., Aydın, M., Yurtcu, H.H., Reddy, J.N.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226, 3807–3822 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Atashafrooz, M., Bahaadini, R., Sheibani, H.R.: Nonlocal, strain gradient and surface efects on vibration and instability of nanotubes conveying nanolow. Mech. Adv. Mater. Struct. (2018). https://doi.org/10.1080/15376494.2018.1487611

    Article  Google Scholar 

  26. Sedighi, H.M., Reza, A.: The effect of quintic nonlinearity on the investigation of transversely vibrating bulked Euler–Bernoulli beams. J. Theor. Appl. Mech. 51(4), 959–968 (2013)

    Google Scholar 

  27. Hieu, D.V., Hai, N.Q.: Free vibration analysis of quintic nonlinear beams using equivalent linearization method with a weighted averaging. J. Appl. Comput. Mech. 5(1), 46–57 (2019)

    Google Scholar 

  28. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method. Comput. Math Appl. 59, 3222–3228 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Mickens, R.E.: Mathematical and numerical study of the Duffing-harmonic oscillator. J. Sound Vib. 244(3), 563–567 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Fan, J.: He’s frequency–amplitude formulation for the Duffing harmonic oscillator. Comput. Math Appl. 58, 2473–2476 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Ebaid, A.E.: Analytical periodic solution to a generalized nonlinear oscillator: application of He’s frequency–amplitude formulation. Mech. Res. Commun. 37, 111–112 (2010)

    MATH  Google Scholar 

  32. Mickens, R.E.: Oscillations in an x4/3 potential. J. Sound Vib. 246(2), 375–378 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Mickens, R.E.: Analysis of non-linear oscillators having non-polynomial elastic terms. J. Sound Vib. 255(4), 789–792 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Mickens, R.E.: Iteration method solutions for conservative and limit-cycle x1/3 force oscillators. J. Sound Vib. 292, 964–968 (2006)

    MATH  Google Scholar 

  35. Mickens, R.E.: Harmonic balance and iteration calculations of periodic solutions to. J. Sound Vib. 306, 968–972 (2007)

    MathSciNet  Google Scholar 

  36. Zhu, Q., Ishitoby, M.: Chaos and bifurcations in an on linear vehicle model. J. Sound Vib. 275, 1136–1146 (2004)

    Google Scholar 

  37. Cveticanin, L., Zukovic, M.: Melnikov’s criteria and chaos in systems with fractional order deflection. J. Sound Vib. 326, 768–779 (2009)

    Google Scholar 

  38. Russell, D., Rossing, T.: Testing the nonlinearity of piano hammers using residual shock spectra. Acta Acust. 84, 967–975 (1998)

    Google Scholar 

  39. Ozis, T., Yildirm, A.: Determination of periodic solution for a u1/3 force by He’s modified Lindstedt–Poincare method. J. Sound Vib. 301, 415–419 (2007)

    MATH  Google Scholar 

  40. Belendez, A., Pascual, C., Gallego, S., Ortufio, M., Neipp, C.: Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an x1/3 force nonlinear oscillator. Phys. Lett. A 371, 421–426 (2007)

    MATH  Google Scholar 

  41. Hu, H., Xiong, Z.G.: Oscillations in an potential. J. Sound Vib. 259, 977–980 (2003)

    MathSciNet  MATH  Google Scholar 

  42. van Horssen, W.T.: On the periods of the periodic solutions of the nonlinear oscillator equation. J. Sound Vib. 260, 961–964 (2003)

    MATH  Google Scholar 

  43. Anh, N.D., Hai, N.Q., Hieu, D.V.: The equivalent linearization method with a weighted averaging for analyzing of nonlinear vibrating systems. Lat. Am. J. Solids Struct. 14, 1723–1740 (2017)

    Google Scholar 

  44. Hieu, D.V., Hai, N.Q., Hung, D.T.: The equivalent linearization method with a weighted averaging for solving undamped nonlinear oscillators. J. Appl. Math. 2018, 7487851 (2018)

    MathSciNet  Google Scholar 

  45. Hieu, D.V., Hai, N.Q.: Analyzing of nonlinear generalized Duffing oscillators using the equivalent linearization method with a weighted averaging. Asian Res. J. Math. 9(1), 1–14 (2018)

    Google Scholar 

Download references

Acknowledgements

The research is supported by Thai Nguyen University of Technology Grant for a Scientific Project (No. “T2018-B27”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Van Hieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, D.V. A New Approximate Solution for a Generalized Nonlinear Oscillator. Int. J. Appl. Comput. Math 5, 126 (2019). https://doi.org/10.1007/s40819-019-0709-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0709-9

Keywords

Navigation