Skip to main content
Log in

Interrelationships Between Marichev–Saigo–Maeda Fractional Integral Operators, the Laplace Transform and the \({\overline{H}}\)-Function

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we first evaluate the Laplace transform of Marichev–Saigo–Maeda (M–S–M) fractional integral operators whose kernel is the Appell function \(F_{3}\) and point out its six special cases (Saigo, Erdélyi–Kober, Riemann–Liouville and Weyl fractional integral operators). Certain new and known results can be obtained as special cases of our key findings. Next, we find the image of \({\overline{H}}\)-Function under the operators of our study. Some interesting special cases of our key result are also considered and demonstrated to be connected with certain existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bansal, M.K., Jolly, N., Jain, R., Kumar, D.: An integral operator involving generalized Mittag–Leffler function and associated fractional calculus results. J. Anal. https://doi.org/10.1007/s41478-018-0119-0 (2018)

  2. Bansal, M.K., Kumar, D., Jain, R.: A study of Marichev–Saigo–Maeda fractional integral operators associated with S-generalized gauss hypergeometric function. Kyungpook Math. J. (2018) (accepted)

  3. Choi, J., Kachhia, K.B., Prajapati, J.C., Purohit, S.D.: Some integral transforms involving extended generalized Gauss hypergeometric functions. Commun. Korean Math. Soc. 31(4), 779–790 (2016)

    Article  MathSciNet  Google Scholar 

  4. Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman & Hall, Boca Raton (2007)

    MATH  Google Scholar 

  5. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (2007)

    MATH  Google Scholar 

  6. Gupta, R.K., Shaktawat, B.S., Kumar, D.: Marichev–Saigo–Maeda fractional calculus operators involving generalized Mittag–Leffler function. J. Chem. Biol. Phys. Sci. 6(2), 556–567 (2016)

    Google Scholar 

  7. Inayat-Hussain, A.A.: New properties of hypergeometric series derivable from Feynman integrals II. A generalization of the H-function. J. Phys. A Math. Gen. 20, 4119–4128 (1987)

    Article  MathSciNet  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Marichev, O.I.: Volterra equation of Mellin convolution type with a Horn function in the kernel. Izvestiya Akademii Nauk BSSR Seriya Fiziko-Matematicheskikh Nauk 1, 128–129 (1974). (Russian)

    Google Scholar 

  10. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, New York (2010)

    Book  Google Scholar 

  11. Nisar, K.S., Atangana, A., Purohit, S.D.: Marichev–Saigo–Maeda fractional operator representations of generalized struve function. arXiv:1607.02756 (2016)

  12. Purohit, S.D., Suthar, D.L., Kalla, S.L.: Marichev–Saigo–Maeda fractional integration operators of the Bessel functions. LE MATEMATICHE LXVII, 21–32 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Saigo, M., Maeda, N.: More generalization of fractional calculus, Transform Methods & Special Functions, Varna ’96, 386–400. Bulgarian Academy of Sciences, Bulgaria, Sofia (1998)

  14. Saxena, R.K., Choudhary, C.R., Kalla, S.L.: Application of generalized H-function in bivariate distribution. Rev. Acad. Can. Cienc. XIV(1—-2), 111–120 (2002)

    MathSciNet  Google Scholar 

  15. Saxena, R.K., Purohit, S.D., Kumar, Dinesh: Integral inequalities associated with Gauss hypergeometric function fractional integral operators. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 88(1), 27–31 (2018)

    Article  MathSciNet  Google Scholar 

  16. Singh, J., Kumar, D.: On the distribution of mixed sum of independent random variables one of them associated with Srivastava’s polynomials and \({\bar{H}}\)-function. J. Appl. Math. Stat. Inform. 10(1), 53–62 (2014)

    Article  MathSciNet  Google Scholar 

  17. Singh, J., Kumar, D., Nieto, J.J.: Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Solitons Fractals 99, 109–115 (2017)

    Article  MathSciNet  Google Scholar 

  18. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The \(H\)-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  19. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  20. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited). Wiley, Chichester (1985)

    Google Scholar 

  21. Srivastava, H.M., Saxena, R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Srivastava, H.M.: A new family of the \(\lambda \)-generalized Hurwitz–Lerch zeta functions with applications. Appl. Math. Inf. Sci. 8(4), 1485–1500 (2014)

    Article  MathSciNet  Google Scholar 

  23. Srivastava, H.M., Saxena, R.K., Parmar, R.K.: Some families of the incomplete H-functions and the incomplete \({\bar{H}}\)-functions and associated integral transforms and operators of fractional calculus with applications. Russ. J. Math. Phys. 25(1), 116–138 (2018)

    Article  MathSciNet  Google Scholar 

  24. Srivastava, H.M., Bansal, M.K., Harjule, P.: A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function. Math. Methods Appl. Sci. 41(16), 6108–6121 (2018)

    Article  MathSciNet  Google Scholar 

  25. Srivastava, H.M., Jolly, N., Bansal, M.K., Jain, R.: A new integral transform associated with the \(\lambda \)-extended Hurwitz-Lerch zeta function. RACSAM 113(3), 1679–1692 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhao, D., Singh, J., Kumar, D., Rathore, S., Yang, X.J.: An efficient computational technique for local fractional heat conduction equations in fractal media. J. Nonlinear Sci. Appl. 10, 1478–1486 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M.K., Kumar, D. & Jain, R. Interrelationships Between Marichev–Saigo–Maeda Fractional Integral Operators, the Laplace Transform and the \({\overline{H}}\)-Function. Int. J. Appl. Comput. Math 5, 103 (2019). https://doi.org/10.1007/s40819-019-0690-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0690-3

Keywords

Mathematics Subject Classification

Navigation