Skip to main content
Log in

Sedimentation of random suspensions and the effect of hyperuniformity

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

This work is concerned with the mathematical analysis of the bulk rheology of random suspensions of rigid particles settling under gravity in viscous fluids. Each particle generates a fluid flow that in turn acts on other particles and hinders their settling. In an equilibrium perspective, for a given ensemble of particle positions, we analyze both the associated mean settling speed and the velocity fluctuations of individual particles. In the 1970s, Batchelor gave a proper definition of the mean settling speed, a 60-year-old open problem in physics, based on the appropriate renormalization of long-range particle contributions. In the 1980s, a celebrated formal calculation by Caflisch and Luke suggested that velocity fluctuations in dimension \(d=3\) should diverge with the size of the sedimentation tank, contradicting both intuition and experimental observations. The role of long-range self-organization of suspended particles in form of hyperuniformity was later put forward to explain additional screening of this divergence in steady-state observations. In the present contribution, we develop the first rigorous theory that allows to justify all these formal calculations of the physics literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, as is standard in the field, e.g. [64] or [48, Section 7], stationarity is understood as follows: there exists a measure-preserving group action \(\{\tau _{L,x}\}_{x\in Q_L}\) of \(({\mathbb {R}}^d/L{\mathbb {Z}}^d,+)\) on the probability space \((\Omega ,{\mathbb {P}})\) such that \({\mathcal {P}}_L^\omega +x = {\mathcal {P}}_L^{\tau _{L,x} \omega }\) for all \(x,\omega \).

References

  1. Armstrong, S., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208, 999–1154 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative stochastic homogenization and large-scale regularity. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 352. Springer, Cham (2019)

  3. Armstrong, S., Lin, J.: Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form. Arch. Ration. Mech. Anal. 225(2), 937–991 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armstrong, S.N., Daniel, J.-P.: Calderón-Zygmund estimates for stochastic homogenization. J. Funct. Anal. 270(1), 312–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avellaneda, M., Lin, F.-H.: Compactness methods in the theory of homogenization. Comm. Pure Appl. Math. 40(6), 803–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avellaneda, M., Lin, F.-H.: \(L^p\) bounds on singular integrals in homogenization. Commun. Pure Appl. Math. 44(8–9), 897–910 (1991)

    Article  MATH  Google Scholar 

  8. Batchelor, G.K.: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52(2), 245–268 (1972)

    Article  ADS  MATH  Google Scholar 

  9. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. Commun. Math. Phys. 356(1), 189–230 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bergougnoux, L., Ghicini, S., Guazzelli, E., Hinch, E.J.: Spreading fronts and fluctuations in sedimentation. Phys. Fluids 15(7), 1875–1887 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bergougnoux, L., Guazzelli, E.: Dilute sedimenting suspensions of spheres at small inertia. J. Fluid Mech. 914, A33 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Brenner, M.P.: Screening mechanisms in sedimentation. Phys. Fluids 11(4), 754–772 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Burgers, J.M.: On the influence of the concentration of a suspension upon the sedimentation velocity (in particular for a suspension of spherical particles). Proc. Kon. Nederl. Akad. Wet., 44:1045–1051 & 1177–1184, (1941)

  14. Burgers, J.M.: On the influence of the concentration of a suspension upon the sedimentation velocity (in particular for a suspension of spherical particles). Proc. Kon. Nederl. Akad. Wet., 45:9–16 & 126–128, (1942)

  15. Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  MATH  Google Scholar 

  16. Caflisch, R.E., Luke, J.H.C.: Variance in the sedimentation speed of a suspension. Phys. Fluids 28(3), 759–760 (1985)

    Article  ADS  MATH  Google Scholar 

  17. Carrapatoso, K., Hillairet, M.: On the derivation of a Stokes-Brinkman problem from Stokes equations around a random array of moving spheres. Commun. Math. Phys. 373(1), 265–325 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi \) interface model. Probab. Theory Related Fields 133(3), 358–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duerinckx, M.: Effective viscosity of random suspensions without uniform separation. Ann. Inst. H. Poincaré Anal, Non Linéaire (2021). (in press)

  20. Duerinckx, M., Gloria, A.: Multiscale functional inequalities in probability: Concentration properties. ALEA Lat. Am. J. Probab. Math. Stat. 17, 133–157 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duerinckx, M., Gloria, A.: Multiscale functional inequalities in probability: Constructive approach. Ann. H. Lebesgue 3, 825–872 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duerinckx, M., Gloria, A.: Corrector equations in fluid mechanics: Effective viscosity of colloidal suspensions. Arch. Ration. Mech. Anal. 239, 1025–1060 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duerinckx, M., Gloria, A.: On Einstein’s effective viscosity formula. Preprint, arXiv:2008.03837

  24. Duerinckx, M., Gloria, A.: Quantitative homogenization theory for random suspensions in steady Stokes flow. Preprint, arXiv:2103.06414

  25. Duerinckx, M., Gloria, A.: Continuum percolation in stochastic homogenization and the effective viscosity problem. Preprint, arXiv:2108.09654

  26. Duerinckx, M., Otto, F.: Higher-order pathwise theory of fluctuations in stochastic homogenization. Stoch. Partial Differ. Equ. Anal. Comput. 8, 625–692 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 19(2), 289–306 (1906)

    Article  MATH  Google Scholar 

  29. Feuillebois, F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139(4), 145–171 (1984)

    Article  ADS  MATH  Google Scholar 

  30. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Steady-state problems. Springer Monographs in Mathematics. Springer, New York (2011)

  31. Gehring, F.W.: The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: A brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giaquinta, M., Modica, G.: Regularity results for some classes of higher order non linear elliptic systems. J. Reine Angew. Math. 311(312), 145–169 (1979)

    MathSciNet  MATH  Google Scholar 

  34. Gloria, A.: A scalar version of the Caflisch-Luke paradox. Commun. Pure Appl. Math. 74(7), 1403–1452 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. Milan J. Math. 88, 99–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guazzelli, E., Hinch, J.: Fluctuations and Instability in Sedimentation. Annu. Rev. Fluid Mech. 43, 97–116 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hillairet, M.: On the homogenization of the Stokes problem in a perforated domain. Arch. Ration. Mech. Anal. 230(3), 1179–1228 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hillairet, M., Moussa, A., Sueur, F.: On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow. Kinet. Relat. Models 12(4), 681–701 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hinch, E.J.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83(4), 695–720 (1977)

    Article  ADS  MATH  Google Scholar 

  42. Hinch, E.J.: Sedimentation of small particles. In E. Guyon, J.-P. Nadal, and Y. Pomeau, editors, Disorder and Mixing, volume 152 of NATO ASI Series E: Applied Sciences, pages 153–161. Kluwer Academic Publisher, (1988)

  43. Höfer, R.M.: Sedimentation of inertialess particles in Stokes flows. Commun. Math. Phys. 360(1), 55–101 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Höfer, R.M.: Convergence of the method of reflections for particle suspensions in Stokes flows. J. Differ. Equ. 297, 81–109 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Höfer, R.M., Gérard-Varet, D.: Mild assumptions for the derivation of Einstein’s effective viscosity formula. Commun. Partial Differ. Equ. 46(4), 611–629 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jabin, P.-E., Otto, F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250(2), 415–432 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Jancovici, B., Lebowitz, J.L., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72(3–4), 773–787 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  49. Koch, D.L., Shaqfeh, E.S.G.: Screening in sedimenting suspensions. J. Fluid Mech. 224, 275–303 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ladd, A.J.C.: Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. Phys. Rev. Lett. 76(8), 1392–1395 (1996)

    Article  ADS  Google Scholar 

  51. Ladd, A.J.C.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9(1), 491–499 (1997)

    Article  ADS  Google Scholar 

  52. Last, G., Penrose, M.D.: Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150(3–4), 663–690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Leblé, T., Serfaty, S.: Fluctuations of two-dimensional Coulomb gases. Geom. Funct. Anal. 28(2), 443–508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27, 1491–1494 (1983)

    Article  ADS  Google Scholar 

  55. Lei, X., Ackerson, B.J., Tong, P.: Settling statistics of hard sphere particles. Phys. Rev. Lett. 86(15), 3300–3303 (2001)

    Article  ADS  Google Scholar 

  56. Luke, J.H.C.: Decay of velocity fluctuations in a stably stratified suspension. Phys. Fluids 12(6), 1619–1621 (2000)

    Article  ADS  MATH  Google Scholar 

  57. Marahrens, D., Otto, F.: Annealed estimates on the Green’s function. Probab. Theory Related Fields 163(3–4), 527–573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Martin, P.A., Yalcin, T.: The charge fluctuations in classical Coulomb systems. J. Stat. Phys. 22(4), 435–463 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  59. Mecherbet, A.: Sedimentation of particles in Stokes flow. Kinet. Relat. Models 12(5), 995–1044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nicolai, H., Guazzelli, E.: Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres. Phys. Fluids 7(1), 3–5 (1995)

    Article  ADS  Google Scholar 

  61. Nicolai, H., Herzhaft, B., Hinch, E.J., Oger, L., Guazzelli, E.: Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres. Phys. Fluids 7(1), 12–23 (1995)

    Article  ADS  Google Scholar 

  62. Niethammer, B., Schubert, R.: A local version of Einstein’s formula for the effective viscosity of suspensions. SIAM J. Math. Anal. 52(3), 2561–2591 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  63. Otto, F.: Introduction to stochastic homogenization. Lecture notes for a course taught during the Winterschool Calculus of Variations and Probability at Université Paul Sabatier, Toulouse (2019)

  64. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloq. Math. Soc. János Bolyai, pages 835–873. North-Holland, Amsterdam (1981)

  65. Peres, Y., Sly, A.: Rigidity and tolerance for perturbed lattices. Preprint, arXiv:1409.4490

  66. Segrè, P.N.: Fluctuations in particle sedimentation. In: Fernández-Nieves, A., Puertas, A.M. (eds.) Fluids Colloids and Soft Materials: An Introduction to Soft Matter Physics, vol. 27, pp. 45–58. Wiley, New York (2016)

    Google Scholar 

  67. Segrè, P.N., Herbolzheimer, E., Chaikin, P.M.: Long-range correlations in sedimentation. Phys. Rev. Lett. 79(13), 2574–2577 (1997)

    Article  ADS  Google Scholar 

  68. Serfaty, S.: Gaussian fluctuations and free energy expansion for 2D and 3D Coulomb gases at any temperature. Preprint, arXiv:2003.11704

  69. Shen, Z.: The \(L^p\) boundary value problems on Lipschitz domains. Adv. Math. 216, 212–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Torquato, S.: Random heterogeneous materials. Interdisciplinary Applied Mathematics, vol. 16. Springer, New York (2002)

  71. Torquato, S.: Hyperuniformity and its generalizations. Phys. Rev. E 94(2), 022122 (2016)

    Article  ADS  Google Scholar 

  72. Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniform systems, and order metrics. Phys. Rev. E 68, 041113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  74. von Smoluchowski, M.: Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen. Bull. Acad. Sci. Cracovie A 1, 28–39 (1911)

    MATH  Google Scholar 

  75. von Smoluchowski, M.: On the practical applicability of Stokes’ law. Proc. 5th Intern. Cong. Math. 2, 192–201 (1912)

  76. Wu, L.: A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Relat. Fields 118(3), 427–438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yakir, O.: Recovering the lattice from its random perturbations. Int. Math. Res. Not. rnaa316 (2020)

Download references

Acknowledgements

MD acknowledges financial support from the CNRS-Momentum program, and AG from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement \(\hbox {n}^\circ \) 864066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gloria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1. Functional-analytic version of hyperuniformity

Appendix 1. Functional-analytic version of hyperuniformity

The present appendix is devoted to a more detailed discussion and motivation of the hyperuniformity assumptions (Hyp) and (Hyp\(^+\)) introduced in Sect. 2.1. Pioneered by Lebowitz [47, 54] in the physical literature for Coulomb systems, the notion of hyperuniformity for a point process \({\mathcal {P}}\) on \({\mathbb {R}}^d\) was first coined and theorized by Torquato and Stillinger [73] (see also [32, 71]) as the suppression of density fluctuations. More precisely, while for a Poisson point process one has \(\mathrm {Var}\left[ \sharp ({\mathcal {P}}\cap {B_R})\right] \propto |B_R|\), the process \({\mathcal {P}}\) is said to be hyperuniform if instead

$$\begin{aligned} \lim _{R\uparrow \infty } \frac{\mathrm {Var}\left[ \sharp ({\mathcal {P}}\cap {B_R})\right] }{|B_R|}=0. \end{aligned}$$
(A.1)

Typically, this concerns processes for which number fluctuations are a boundary effect, that is, \(\mathrm {Var}\left[ \sharp ({\mathcal {P}}\cap {B_R})\right] \lesssim |\partial B_R|\). Hyperuniformity can be interpreted as a hidden form of order on large scales and has been observed in various types of physical and biological systems, see e.g. [71, 73]. For Coulomb gases, rigorous results on the hyperuniformity of the Gibbs state have been recently obtained in [9, 53, 68]. The simplest examples of hyperuniform processes are given by perturbed lattices, e.g. \({\mathcal {P}}:=\{z+U_z:z\in {\mathbb {Z}}^d\}\) where the lattice points in \({\mathbb {Z}}^d\) are pertubed by iid random variables \(\{U_z\}_{z\in {\mathbb {Z}}^d}\) (this model however only enjoys discrete stationarity due to the underlying lattice structure; see [65, 77] for refined properties).

Alternatively, hyperuniformity is known to be equivalent to the vanishing of the structure factor in the small-wavenumber limit, that is,

$$\begin{aligned}\lim _{k\rightarrow 0}S(k)=0,\end{aligned}$$

where the structure factor is defined as the Fourier transform \(S(k):={{\widehat{h}}}_{2}(k)\) of the total pair correlation function \(h_2\), cf. Definition 2.1. If the pair correlation function is integrable, this can equivalently be written as

$$\begin{aligned} S(0)=\int _{{\mathbb {R}}^d}h_2=0. \end{aligned}$$
(A.2)

The advantage of this reformulation in terms of the structure factor S(k) is that the latter can be directly observed in diffraction experiments. This property of vanishing structure factor is reminiscent of crystals, and indeed hyperuniform processes share crystalline properties on large scales, although they can be statistically isotropic like gases, thereby leading to a new state of matter [72].

In the spirit of (A.2), in our periodized setting, for a family \(\{{\mathcal {P}}_L\}_{L\ge 1}\) of random point processes \({\mathcal {P}}_L\) on \(Q_L\), we consider the following slightly relaxed definition of hyperuniformity, cf. (Hyp),

$$\begin{aligned} \sup _{L\ge 1}\,L^2\,\Big |\int _{Q_L}h_{2,L}\Big |\,<\, \infty , \end{aligned}$$
(A.3)

which is viewed as the approximate vanishing of the corresponding structure factors at 0 in the limit \(L\uparrow \infty \). The precise rate \(O(L^{-2})\) is chosen in view of Lemma A.2 below. As claimed, such a definition of hyperuniformity in terms of structure factors implies the suppression of density fluctuations in the following sense.

Lemma A.1

(Density fluctuations [32, 73]) Let a family \(\{{\mathcal {P}}_L\}_{L\ge 1}\) of random point processes \({\mathcal {P}}_L\) on \(Q_L\) be hyperuniform in the sense of (A.3). Then, for all \(1\le R\le L\),

$$\begin{aligned}\mathrm {Var}\left[ \sharp ({\mathcal {P}}_L \cap {B_R})\right] \,\lesssim \, \rho _L^2|B_R|\,\Big (L^{-2}+\int _{Q_L}\big (1\wedge \tfrac{|x|_L}{R}\big )\,|g_{2,L}(x)|\,dx\Big ).\end{aligned}$$

In particular, provided that the pair correlation function \(g_{2,L}\) has fast enough decay in the sense of \(\sup _{L\ge 1}\int _{Q_L}|x|_L|g_{2,L}(x)|\,dx<\infty \), we deduce for all \(1\le R\le L\),

$$\begin{aligned}\mathrm {Var}\left[ \sharp ({\mathcal {P}}_L \cap {B_R})\right] \,\lesssim \,\rho _L^2|\partial B_R|.\end{aligned}$$

Proof

Number fluctuations are computed as follows,

$$\begin{aligned} \mathrm {Var}\left[ \sharp ({\mathcal {P}}_L \cap {B_R})\right] \,=\,{\text {Var}}\bigg [{\sum _n\mathbb {1}_{B_R}(x_{n,L})}\bigg ]= & {} \rho _L^2\iint _{B_R\times B_R}h_{2,L}(x-y)\,dxdy\\= & {} \rho _L^2\int _{Q_L}|B_R(-x)\cap B_R|\,h_{2,L}(x)\,dx. \end{aligned}$$

Hence, decomposing

$$\begin{aligned}|B_R(-x)\cap B_R|=|B_R|-|B_R\setminus B_R(-x)|=|B_R|+\big (1\wedge \tfrac{|x|_L}{R}\big )\,O(|B_R|),\end{aligned}$$

where the last summand is a continuous function that vanishes at \(x=0\), we deduce

$$\begin{aligned}&\bigg |\frac{1}{|B_R|}\mathrm {Var}\left[ \sharp ({\mathcal {P}}_L \cap {B_R})\right] -\rho _L^2\int _{Q_L}h_{2,L}\bigg | \\&\quad \,\lesssim \,\rho _L^2\int _{Q_L}\big (1\wedge \tfrac{|x|_L}{R}\big )\,|g_{2,L}(x)|\,dx, \end{aligned}$$

and the conclusion follows. \(\square \)

Recall that a Poisson point process \({\mathcal {P}}=\{x_n\}_n\) on \({\mathbb {R}}^d\) satisfies \(\mathrm {Var}\left[ \sum _n\zeta (x_n)\right] \propto \int _{{\mathbb {R}}^d}|\zeta |^2\) for all \(\zeta \in C^\infty _c({\mathbb {R}}^d)\), and that similarly any point process \({\mathcal {P}}\) with integrable pair correlation function satisfies

$$\begin{aligned} {\text {Var}}\bigg [{\sum _n\zeta (x_n)}\bigg ]\,=\,\rho ^2\iint _{{\mathbb {R}}^d\times {\mathbb {R}}^d}\zeta (x)\zeta (y)\,h_2(x-y)\,dxdy\,\lesssim \,\rho ^2\int _{{\mathbb {R}}^d}|\zeta |^2. \end{aligned}$$
(A.4)

The suppression of density fluctuations under hyperuniformity is naturally expected to lead to an improved version of such a variance estimate. Indeed, given an independent copy \(\{x_{n}'\}_n\) of \({\mathcal {P}}=\{x_{n}\}_n\), we may represent

$$\begin{aligned}{\text {Var}}\bigg [\sum _n \zeta (x_{n})\bigg ]\,=\,{\mathbb {E}}{\mathbb {E}}'\bigg [\frac{1}{2}\Big (\sum _n \zeta (x_{n})-\sum _n \zeta (x_{n}')\Big )^2\bigg ],\end{aligned}$$

and the suppression of density fluctuations would formally allow to locally couple the random point sets \(\{x_{n}'\}_n\) and \(\{x_{n}\}_n\), only comparing points of the two realizations one to one locally, which would ideally translate into the gain of a derivative: for all \(\zeta \in C^\infty _c({\mathbb {R}}^d)\),

$$\begin{aligned} {\text {Var}}\bigg [\sum _n \zeta (x_{n})\bigg ]\,\lesssim \,\rho ^2\int _{{\mathbb {R}}^d}|\nabla \zeta |^2. \end{aligned}$$
(A.5)

Indeed, provided that the pair correlation function has fast enough decay, it can be checked that hyperuniformity (A.1) is equivalent to this improved variance inequality (A.5). In our periodized setting, a rigorous statement is as follows.

Lemma A.2

(Functional characterization of hyperuniformity) Consider a family \(\{{\mathcal {P}}_L\}_{L\ge 1}\) of random point processes \({\mathcal {P}}_L=\{x_{n,L}\}_n\) on \(Q_L\) and assume that the pair correlation function \(g_{2,L}\) has fast enough decay in the sense of

$$\begin{aligned}\sup _{L\ge 1}\int _{Q_L}|x|_L^2|g_{2,L}(x)|\,dx<\infty .\end{aligned}$$

Then \(\{{\mathcal {P}}_L\}_{L\ge 1}\) is hyperuniform in the sense of (A.3) if and only if for all \(L\ge 1\) and \(\zeta \in C_{{\text {per}}}^\infty (Q_L)\) we have

$$\begin{aligned} {\text {Var}}\bigg [{\sum _n\zeta (x_{n,L})}\bigg ]\,\lesssim \,\rho _L^2\int _{Q_L}|\nabla \zeta |^2+L^{-2}\rho _L^2\int _{Q_L}|\zeta |^2. \end{aligned}$$
(A.6)

In particular, the latter implies for all \(\zeta \in C_{{\text {per}}}^\infty (Q_L)\) with \({\mathbb {E}}\left[ \sum _n\zeta (x_{n,L}) \right] =\rho _L\int _{Q_L}\zeta =0\),

$$\begin{aligned}{\text {Var}}\bigg [{\sum _n\zeta (x_{n,L})}\bigg ]\,\lesssim \,\rho _L^2\int _{Q_L}|\nabla \zeta |^2.\end{aligned}$$

Proof

By the definition of the total pair correlation function \(h_{2,L}\), cf. Definition 2.1, recall that

$$\begin{aligned}{\text {Var}}\bigg [{\sum _n\zeta (x_{n,L})}\bigg ]=\rho _L^2\iint _{Q_L\times Q_L}\zeta (x)\zeta (y)\,h_{2,L}(x-y)\,dxdy.\end{aligned}$$

Choosing \(\zeta =1\), the variance inequality (A.6) yields

$$\begin{aligned}\Big |\int _{Q_L}h_{2,L}\Big |\lesssim L^{-2},\end{aligned}$$

that is, our definition (A.3) of hyperuniformity. It remains to prove the converse implication. Recomposing the square, the above identity for the variance takes the form

$$\begin{aligned} {\text {Var}}\bigg [{\sum _n\zeta (x_{n,L})}\bigg ]= & {} -\frac{1}{2}\rho _L^2\iint _{Q_L\times Q_L}|\zeta (x)-\zeta (y)|^2\,g_{2,L}(x-y)\,dxdy\\&+\Big (\rho _L^2\int _{Q_L}|\zeta |^2\Big )\Big (\int _{Q_L}h_{2,L}\Big ). \end{aligned}$$

Using the decay of correlations to estimate the first right-hand side term, and hyperuniformity (A.3) to estimate the last one, the variance inequality (A.6) follows.

While the above variance inequality is restricted to linear functionals \(Y_L=\sum _n\zeta (x_{n,L})\) of the point process, the analysis of nonlinear multibody interactions requires a corresponding tool for general nonlinear functionals. For general functionals \(Y=Y({\mathcal {P}})\) of a Poisson point process \({\mathcal {P}}\) with unit intensity on \({\mathbb {R}}^d\), the following variance inequality is known to hold [52, 76],

$$\begin{aligned}\mathrm {Var}\left[ Y({\mathcal {P}})\right] \le {\mathbb {E}}\bigg [\int _{{\mathbb {R}}^d}\big (\partial ^{{\text {add}}}_yY({\mathcal {P}})\big )^2dy\bigg ],\qquad \partial ^{{\text {add}}}_yY({\mathcal {P}}):=Y({\mathcal {P}}\cup \{y\})-Y({\mathcal {P}}),\end{aligned}$$

where the difference operator \(\partial ^{{\text {add}}}\) is known as the add-one-point operator. More general versions of this type of functional inequality have been considered in the literature as a convenient quantification of nonlinear mixing in order to cover various classes of examples. In this spirit, our improved mixing assumption (Mix\(^+\)) in Sect. 2.1 is formulated in terms of the multiscale variance inequality (2.2) of [20, 21]. As shown in [21, Section 3], this covers most examples of interest in materials science [70], including for instance (periodized) hardcore Poisson processes and random parking processes. Applied to a linear functional \(Y_L=\sum _n\zeta (x_{n,L})\), this variance inequality (2.2) clearly reduces to (A.4), so that (2.2) can indeed be viewed as a nonlinear version of (A.4).

In the hyperuniform setting, as number fluctuations are suppressed, the add-one-point operator in the above or the general oscillation in (Mix\(^+\)) could be intuitively replaced by a suitable “move-point” operator, only allowing to locally move points of the process, but not add or remove any. A general version of this idea is formalized as the improved hyperuniformity assumption (Hyp\(^+\)) in Sect. 2.1, cf. (2.3). Again, applied to a linear functional \(Y_L=\sum _n\zeta (x_{n,L})\), this new variance inequality (2.3) clearly reduces to (A.6), so that (2.3) can be viewed as a nonlinear version. We believe that this new functional inequality is of independent interest.

Example A.3

(Perturbed lattices) We briefly show that assumption (Hyp\(^+\)) in terms of the hyperuniform multiscale variance inequality (2.3) is not empty. For that purpose, we consider the simplest example of a hyperuniform process on \(Q_L\), that is, the perturbed lattice \({\mathcal {P}}_L:=\{z+U_z:z\in {\mathbb {Z}}^d\cap Q_L\}\), where the lattice points in \({\mathbb {Z}}^d \cap Q_L\) are perturbed by iid random variables \(\{U_z\}_{z\in {\mathbb {Z}}^d\cap Q_L}\), say with values in the unit ball B. This model \({\mathcal {P}}_L\) is easily checked to satisfy the following stronger version of the variance inequality (2.3): for all \(\sigma ({\mathcal {P}}_L)\)-measurable random variables \(Y({\mathcal {P}}_L)\),

$$\begin{aligned} \mathrm {Var}\left[ Y({\mathcal {P}}_L)\right] \,\le \,\frac{1}{2}{\mathbb {E}}\bigg [\int _{Q_L}\Big (\partial ^{{\text {mov}}}_{{\mathcal {P}}_L,B_{1+\sqrt{d}/2}(z)}Y({\mathcal {P}}_L)\Big )^2\,dz\bigg ], \end{aligned}$$
(A.7)

where we recall that the move-point derivative \(\partial ^{{\text {mov}}}\) is defined in (Hyp\(^+\)). This is indeed a direct consequence of the Efron-Stein inequality [27] for the iid sequence \(\{U_z\}_{z\in {\mathbb {Z}}^d\cap Q_L}\) in the following form: for \({\mathcal {P}}_{L,z}:=\{y+U_y\}_{y:y\ne z}\cup \{z+U'_z\}\) with \(\{U'_z\}_z\) an iid copy of \(\{U_z\}_z\),

$$\begin{aligned} \mathrm {Var}\left[ Y({\mathcal {P}}_L)\right] \,\le \,\frac{1}{2}{\mathbb {E}}\bigg [\sum _{z\in {\mathbb {Z}}^d\cap Q_L} \big (Y({\mathcal {P}}_L)-Y({\mathcal {P}}_{L,z})\big )^2\bigg ], \end{aligned}$$

while \(Y({\mathcal {P}}_L)-Y({\mathcal {P}}_{L,z})\) can be bounded by \(\partial ^{{\text {mov}}}_{{\mathcal {P}},B(z)}Y({\mathcal {P}})\), thus leading to (A.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M., Gloria, A. Sedimentation of random suspensions and the effect of hyperuniformity. Ann. PDE 8, 2 (2022). https://doi.org/10.1007/s40818-021-00115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00115-0

Keywords

Mathematics Subject Classification

Navigation