Skip to main content
Log in

Observer-Based Event-Triggered Fault Tolerant MPC for Networked IT-2 T–S Fuzzy Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a model predictive control scheme is developed for networked interval type-2 (IT-2) Takagi–Sugeno (T–S) fuzzy systems. To prevent the excessive use of bandwidth, the controller is designed in an event-trigger manner. However, the event conditions often require the transmission of all system states, imposing a substantial demand on network bandwidth; on the other hand, they are subject to network delay and packet loss. For this reason, in the existing approaches, event-triggered mechanisms primarily deployed in close proximity to the plant, or observer-based structures are used to enhance flexibility for implementing the controller. However, a common limitation in all these solutions is the assumption of network links being ideal, or at the very least, not accounting for all network-related limitations. The occurrence of faults is also an inevitable factor that has been overlooked in most related methods. To resolve this issue, a more comprehensive framework for event-triggered controllers is proposed in this paper in which an adaptive fuzzy observer is embedded, and the effects due to delay and packet loss are included in this observer. In addition, by developing an adaptive fault estimator and the introduction of a compensator term into the observer and controller formulations, a fault-tolerant performance of the event-triggered mechanism along with the controller is provided. These features enable the possibility of implementing the event-triggered mechanism next to the controller and at any desired distance from the plant, which resolves a serious concern in this area. Another important challenge considered in this work is ensuring the optimal performance of the controller in the entire prediction horizon. Also, the stochastic stability of the closed-loop system is proved such that defined \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty }\) performance indices are satisfied. Finally, the proposed control approach is evaluated using numerical and practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Consent to Publish Not applicable.

References

  1. Wang, F.Y., Liu, D.: Networked Control Systems. Theory and Applications. Springer, London (2008)

    Book  Google Scholar 

  2. Ranjan Das, S., Sinha, K., Mukherjee, N., Sinha, B.P.: Delay and disruption tolerant networks: a brief survey. In: Intelligent and Cloud Computing, pp. 297–305. Springer, Singapore (2021)

  3. Liu, K., Selivanov, A., Fridman, E.: Survey on time-delay approach to networked control. Annu. Rev. Control. 48, 57–79 (2019)

    Article  MathSciNet  Google Scholar 

  4. Roy, A., Pachuau, J.L., Saha, A.K.: An overview of queuing delay and various delay based algorithms in networks. Computing 103, 2361–2399 (2021)

    Article  MathSciNet  Google Scholar 

  5. Cruz, R.L.: A calculus for network delay. II. Network analysis. IEEE Trans. Inf. Theory 37, 132–141 (1991)

    Article  MathSciNet  Google Scholar 

  6. Azimi-Sadjadi, B.: Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE International Conference on Decision and Control, 2003, pp. 676–681 (2003)

  7. Quevedo, D.E., Nešić, D.: Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans. Autom. Control 56, 370–375 (2010)

    Article  MathSciNet  Google Scholar 

  8. Wang, Y., Ye, H., Ding, S.X., Wang, G., Zhou, D.: Residual generation and evaluation of networked control systems subject to random packet dropout. Automatica 45, 2427–2434 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kurth, C.: Steady-state analysis of sinusoidal time-variant networks applied to equivalent circuits for transmission networks. IEEE Trans. Circuits Syst. 24, 610–624 (1977)

    Article  MathSciNet  Google Scholar 

  10. Caballero-Águila, R., Hermoso-Carazo, A., Linares-Pérez, J.: Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing. Signal Process. 156, 71–83 (2019)

    Article  Google Scholar 

  11. Zhu, X.L., Yang, G.H.: Stability analysis and state feedback control of networked control systems with multi-packet transmission. In: Proceedings of the American Control Conference, 2008, pp. 3133–3138 (2008)

  12. Zhao, Y.B., Huang, T., Kang, Y., Xi, X.: Stochastic stabilization of wireless networked control systems with lossy multi-packet transmission. IET Control Theory Appl. 13, 594–601 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hu, J., Shan, Y., Guerrero, J.M., Ioinovici, A., Chan, K.W., Rodriguez, J.: Model predictive control of microgrids—an overview. Renew. Sustain. Energy Rev. 136, 110422 (2021)

    Article  Google Scholar 

  14. Tarragona, J., Pisello, A.L., Fernández, C., de Gracia, A., Cabeza, L.F.: Systematic review on model predictive control strategies applied to active thermal energy storage systems. Renew. Sustain. Energy Rev. 149, 111385 (2021)

    Article  Google Scholar 

  15. Rodriguez, J., Garcia, C., Mora, A., Flores-Bahamonde, F., Acuna, P., Novak, M., Zhang, Y., Tarisciotti, L., Davari, S.A., Zhang, Z.: Latest advances of model predictive control in electrical drives—Part I: basic concepts and advanced strategies. IEEE Trans. Power Electron. 37, 3927–3942 (2021)

    Article  Google Scholar 

  16. Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: toward safe learning in control. Annu. Rev. Control Robot. Auton. Syst. 3, 269–296 (2020)

    Article  Google Scholar 

  17. Liao, W., Cannon, M., Kouvaritakis, B.: Constrained MPC using feedback linearization on SISO bilinear systems with unstable inverse dynamics. Int. J. Control. 78, 638–646 (2005)

    Article  MathSciNet  Google Scholar 

  18. Okulski, M., Ławryńczuk, M.: Development of a model predictive controller for an unstable heavy self-balancing robot. In: 23rd International Conference on Methods and Models in Automation and Robotics (MMAR), 2018, pp. 503–508 (2018)

  19. Villarroel, F.A., Espinoza, J.R., Perez, M.A., Ramirez, R.O., Baier, C.R., Sbarbaro, D., Silva, J.J., Reyes, M.A.: Stable shortest horizon FCS-MPC output voltage control in non-minimum phase boost-type converters based on input-state linearization. IEEE Trans. Energy Convers. 36, 1378–1391 (2021)

    Article  Google Scholar 

  20. Villarroel, F., Espinoza, J., Pérez, M., Ramírez, R., Baier, C., Morán, L.: Shortest horizon FCS-MPC output voltage tracking in non-minimum phase boost-type converters. In: 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 4119–4124 (2019)

  21. Goodwin, G.C., Haimovich, H., Quevedo, D.E., Welsh, J.S.: A moving horizon approach to networked control system design. IEEE Trans. Autom. Control 49, 1427–1445 (2004)

    Article  MathSciNet  Google Scholar 

  22. Xue, B., Li, N., Li, S., Zhu, Q.: Robust model predictive control for networked control systems with quantization. IET Control Theory Appl. 4, 2896–2906 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ding, B., Tang, X., Pan, H., Zou, T.: On MPC of linear system over networks with bounded delays and packet losses. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014, pp. 2630–2635 (2014)

  24. Lu, R., Xu, Y., Zhang, R.: A new design of model predictive tracking control for networked control system under random packet loss and uncertainties. IEEE Trans. Ind. Electron. 63, 6999–7007 (2016)

    Article  Google Scholar 

  25. Zhao, Y., Gao, H., Chen, T.: Fuzzy constrained predictive control of nonlinear systems with packet dropouts. IET Control Theory Appl. 4, 1665–1677 (2010)

    Article  MathSciNet  Google Scholar 

  26. Vafamand, N., Khooban, M.H., Dragičević, T., Blaabjerg, F.: Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids. IEEE Trans. Ind. Electron. 66, 1356–1362 (2018)

    Article  Google Scholar 

  27. Tang, X., Deng, L., Yu, J., Qu, H.: Output feedback predictive control of interval type-2 T-S fuzzy systems with Markovian packet loss. IEEE Trans. Fuzzy Syst. 26, 2450–2459 (2017)

    Article  Google Scholar 

  28. Liu, N., Tang, X., Deng, L., Yang, S.: Model predictive control for TS fuzzy system with random actuator saturation and packet losses. In: Proceedings of the 2nd International IEEE Conference on Robotics Sciences (ICRAS), 2018, pp. 1–5 (2018)

  29. Tang, X., Deng, L., Liu, N., Yang, S., Yu, J.: Observer-based output feedback MPC for T-S fuzzy system with data loss and bounded disturbance. IEEE Trans. Cybern. 49, 2119–2132 (2018)

    Article  Google Scholar 

  30. Lu, Q., Shi, P., Liu, J., Wu, L.: Model predictive control under event-triggered communication scheme for nonlinear networked systems. J. Frankl. Inst. 356, 2625–2644 (2019)

    Article  MathSciNet  Google Scholar 

  31. Lu, Q., Shi, P., Wu, L., Zhang, H.: Event-triggered interval type-2 ts fuzzy control for nonlinear networked systems. J. Frankl. Inst. 357, 9834–9852 (2020)

    Article  MathSciNet  Google Scholar 

  32. Mao, Z., Jiang, B., Shi, P.: Observer-based fault-tolerant control for a class of networked control systems with transfer delays. J. Frankl. Inst. 348, 763–776 (2011)

    Article  MathSciNet  Google Scholar 

  33. Sakthivel, R., Sakthivel, R., Kwon, O.M., Kaviarasan, B.: Fault estimation and synchronization control for complex dynamical networks with time-varying coupling delay. Int. J. Robust Nonlinear Control 31, 2205–2221 (2021)

    Article  MathSciNet  Google Scholar 

  34. Mehran, K.: Takagi–Sugeno fuzzy modeling for process control. Ind. Autom. Robot. AI 262, 1–31 (2008)

    Google Scholar 

  35. Baleghi, N., Shafiei, M.H.: Design of a stabilizing controller for discrete-time switched delay systems with affine parametric uncertainties. Trans. Inst. Meas. Control. 41, 14–22 (2019)

    Article  Google Scholar 

  36. Weiwei, Q., Jieyu, L., Xiaoxiang, H., Bing, H., Gang, L.: Tube-based active robust MPC for uncertain constrained linear systems with time delays. IEEE Access 7, 125552–125561 (2019)

    Article  Google Scholar 

  37. Gao, H., Zhao, Y., Chen, T.: H fuzzy control of nonlinear systems under unreliable communication links. IEEE Trans. Fuzzy Syst. 17, 265–278 (2008)

    Google Scholar 

  38. Li, Z., Yan, H., Zhang, H., Lam, H.K., Wang, M.: Aperiodic sampled-data-based control for interval type-2 fuzzy systems via refined adaptive event-triggered communication scheme. IEEE Trans. Fuzzy Syst. 29, 310–321 (2020)

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NS, MA, FJ; Methodology: NS, MA, FJ; Formal analysis and investigation: NS; Writing—original draft preparation: NS, MA, FJ; Writing—review and editing: NS, MA, FJ; Resources: NS; Supervision: MA, FJ.

Corresponding author

Correspondence to Mostafa Abedi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical Approval

There are no ethical issues about this article.

Informed Consent Not applicable.

Appendix

Appendix

In this section, the proof of Theorem 1 is stated.

Proof

A Lyapunov function is defined as follows:

$$V = V_{1} + V_{2} + V_{3} + V_{4} ,$$
(46)

where

$$V_{1} = x^{T} (t + \left. s \right|t)P_{1} (t)x(t + \left. s \right|t),$$
$$V_{2} = e_{x}^{T} (t + \left. s \right|t)Q_{1} (t)e_{x} (t + \left. s \right|t),$$
$$V_{3} = e_{f}^{T} (t + \left. s \right|t)G_{1} (t)e_{f} (t + \left. s \right|t),$$
$$V_{4} = \sum\limits_{m = 0}^{h} {x^{T} (t + s - \left. m \right|t)\overline{S}(t)x(t + s - \left. m \right|t) + } \sum\limits_{m = 0}^{h} {e_{x}^{T} } (t + s - \left. m \right|t)\overline{N}(t)e_{x} (t + s - \left. m \right|t).$$

where \(P_{1} (t),\) \(Q_{1} (t),\) \(\overline{S}(t),\) \(G_{1} (t)\) and \(\overline{N}(t)\) are positive definite matrices. Then, \(\Delta V\) is written as:

$$\Delta V = \Delta V_{1} + \Delta V_{2} + \Delta V_{3} + \Delta V_{4} .$$
(47)

\(\Delta V_{1}\) includes system states, which are calculated by substituting the closed-loop dynamics (32) as:

$$\begin{aligned} \Delta V_{1} (x(t + \left. s \right|t)) & = E\{ V_{1} (x(t + \left. {s + 1} \right|t))\} - V_{1} (x(t + \left. s \right|t) \\ & = \sum\limits_{i = 1}^{p} {\sum\limits_{j = 1}^{p} {\omega_{i} } } m_{j} E\{ [A_{ui} x(t + \left. s \right|t) + (A_{dij} + \tilde{v}(t)B_{ij} )x(t + \left. {s - h} \right|t) \\ & \quad - (\tilde{v}(t) + \overline{v})B_{ij} e(t + \left. {s - h} \right|t) - (\tilde{v}(t) + \overline{v})B_{ij} e_{x} (t + \left. {s - h} \right|t) \\ & \quad + B_{i} e_{f} (t + \left. s \right|t) + B_{wi} w(t + \left. s \right|t)]^{T} P_{1} (t)[A_{ui} x(t + \left. s \right|t) \\ & \quad + (A_{dij} + \tilde{v}(t)B_{ij} )x(t + \left. {s - h} \right|t) - (\tilde{v}(t) + \overline{v})B_{ij} e(t + \left. {s - h} \right|t) \\ & \quad - (\tilde{v}(t) + \overline{v})B_{ij} e_{x} (t + \left. {s - h} \right|t) + B_{i} e_{f} (t + \left. s \right|t) + B_{ij} w(t + \left. s \right|t)]\} \\ & \quad - x^{T} (t + \left. s \right|t)P_{1} (t)x(t + \left. s \right|t) \le \xi_{{}}^{T} (t + \left. s \right|t)E\{ \Xi_{1ij} \} \xi (t + \left. s \right|t), \\ \end{aligned}$$
(48)

where

$$\xi (t + \left. s \right|t) = \left[ \begin{gathered} x(t + \left. s \right|t) \\ x(t + \left. {s - h} \right|t) \\ e_{x} (t + \left. s \right|t) \\ e_{x} (t + \left. {s - h} \right|t) \\ e(t + \left. s \right|t) \\ e(t + \left. {s - h} \right|t) \\ e_{f} (t + \left. s \right|t) \\ w(t + \left. s \right|t) \\ \end{gathered} \right],\quad \Pi_{1ij}^{T} = \left[ \begin{gathered} A_{ui}^{T} \\ A_{dij}^{T} + \tilde{\nu }(t)B_{ij}^{T} \\ 0 \\ - (\tilde{\nu }(t) + \overline{\nu })B_{ij}^{T} \\ 0 \\ - (\tilde{\nu }(t) + \overline{\nu })B_{ij}^{T} \\ B_{i}^{T} \\ B_{wi}^{T} \\ \end{gathered} \right],$$
$$\Xi_{1ij} = \Pi_{1ij}^{T} P_{1} (t)\Pi_{1ij} + diag\{ - P_{1} (t),\;0,\;0,\;0,\;0,\;0,\;0,\;0\} .$$

The second part \(\Delta V_{2}\) includes the states estimation error of the system. Therefore, by substituting (35) the following equation is derived:

$$\begin{aligned} \Delta V_{2} (e_{x} (t\left. { + s} \right|t)) & = E\{ V_{2} (e_{x} (t\left. { + s + 1} \right|t))\} - V_{2} (e_{x} (t\left. { + s} \right|t)) \\ & = \sum\limits_{i = 1}^{p} {\omega_{i} } E\{ [(A_{ui} - L_{i} C)e_{x} (t\left. { + s} \right|t) + A_{di} e_{x} (t\left. { + s - h} \right|t) + B_{i} e_{f} (t\left. { + s} \right|t) \\ & \quad + L_{i} C(\tilde{\iota }(t) + (\overline{\iota } + 1))x(t\left. { + s} \right|t)]^{T} Q_{1} (t)[(A_{ui} - L_{i} C)e_{x} (t\left. { + s} \right|t) \\ & \quad + A_{di} e_{x} (t\left. { + s - h} \right|t) + B_{i} e_{f} (t\left. { + s} \right|t) + L_{i} C(\tilde{\iota }(t) + (\overline{\iota } + 1))x(t\left. { + s} \right|t)]\} \\ & \quad - e_{x}^{T} (t\left. { + s} \right|t)Q_{1} (t)e_{x} (t\left. { + s} \right|t) \le \xi_{{}}^{T} (t\left. { + s} \right|t)E\{ \Xi_{2i} \} \xi (t\left. { + s} \right|t), \\ \end{aligned}$$
(49)

where

$$\Pi_{2i}^{T} = \left[ \begin{gathered} C^{T} L_{i}^{T} (\tilde{\iota }(t) + (\overline{\iota } + 1)) \\ 0 \\ A_{ui}^{T} - C^{T} L_{i}^{T} \\ A_{di} \\ 0 \\ 0 \\ B_{i}^{T} \\ B_{wi}^{T} \\ \end{gathered} \right],\quad \Xi_{2i} = \Pi_{2i}^{T} Q_{1} (t)\Pi_{2i} + diag\{ 0,\;0,\;Q_{1} (t),\;0,\;0,\;0,\;0,\;0\} .$$

The third part \(\Delta V_{3}\) includes the fault estimation error of the actuators (36), which yields the following result by substituting the fault dynamics (34) and using Lemma 1 and Assumption 1:

$$\begin{aligned} \Delta V_{3} (e_{f} (t\left. { + s} \right|t)) & = E\{ V_{3} (e_{f} (t\left. { + s + 1} \right|t))\} - V_{3} (e_{f} (t\left. { + s} \right|t)) \\ & = E\{ [f(t\left. { + s + 1} \right|t) - \hat{f}(t\left. { + s} \right|t) + \sum\limits_{i + 1}^{p} {\omega_{i} \Gamma C((\tilde{\iota }(t) + (\overline{\iota } + 1))} x(t\left. { + s} \right|t) \\ & \quad + e_{x} (t\left. { + s} \right|t))]^{T} G_{1} (t)[f(t\left. { + s + 1} \right|t) - \hat{f}(t\left. { + s} \right|t) \\ & \quad + \sum\limits_{i = 1}^{p} {\omega_{i} \Gamma C((\tilde{\iota }(t) + (\overline{\iota } + 1))} x(t\left. { + s} \right|t) + e_{x} (t\left. { + s} \right|t))]\} \\ & \quad - e_{f}^{T} (t\left. { + s} \right|t)G_{1} (t)e_{f} (t\left. { + s} \right|t) = E\{ [f_{r} + e_{f} (t\left. { + s} \right|t) \\ & \quad + \sum\limits_{i = 1}^{p} {\omega_{i} \Gamma C((\tilde{\iota }(t) + (\overline{\iota } + 1))} x(t\left. { + s} \right|t) + e_{x} (t\left. { + s} \right|t))]^{T} G_{1} (t)[f_{r} \\ & \quad + e_{f} (t\left. { + s} \right|t) + \sum\limits_{i = 1}^{p} {\omega_{i} \Gamma C((\tilde{\iota }(t) + (\overline{\iota } + 1))} x(t\left. { + s} \right|t) + e_{x} (t\left. { + s} \right|t))]\} \\ & \quad - e_{f}^{T} (t\left. { + s} \right|t)G_{1} (t)e_{f} (t\left. { + s} \right|t)^{{}} \le \sum\limits_{i = 1}^{p} {\omega_{i} } E\{ [(\tilde{\iota }(t) + (\overline{\iota } + 1))(x(t\left. { + s} \right|t) \\ & \quad + e_{x} (t\left. { + s} \right|t))]\} + e_{f}^{T} (t\left. { + s} \right|t)2G_{1} (t)e_{f} (t\left. { + s} \right|t) \\ & \quad + f_{r}^{T} 3G_{1} (t)f_{r} \le \xi^{T} (t\left. { + s} \right|t)E\{ \Xi_{3i} \} \xi^{T} (t\left. { + s} \right|t) + f_{r}^{T} 3G_{1} (t)f_{r} \\ & \le \xi_{{}}^{T} (t\left. { + s} \right|t)E\{ \Xi_{3i} \} \xi (t\left. { + s} \right|t) + \delta , \\ \end{aligned}$$
(50)

where

$$\begin{aligned} & \Xi_{3i} = diag\{ g^{2} C^{T} \Gamma^{T} 3G_{1} (t)\Gamma C,\;0,\;g^{2} C^{T} \Gamma^{T} 3G_{1} (t)\Gamma C,\;0,\;0,\;0,\;2G_{1} (t),\;0\} , \\ & \delta = f_{r\max }^{2} \lambda_{\max } (3G_{1} ) > 0. \\ \end{aligned}$$

The fourth part of the Lyapunov function \(\Delta V_{4} ,\) includes the delay term, which is expressed as follows:

$$\begin{aligned} \Delta V_{4} & = E\{ x^{T} (t + \left. s \right|t)\overline{S}(t)x(t + \left. s \right|t) - x^{T} (t + \left. {s - h} \right|t)\overline{S}(t)x(t + \left. {s - h} \right|t)\} \\ & \quad + E\{ e_{x}^{T} (t + \left. s \right|t)\overline{N}(t)e_{x} (t + \left. s \right|t) - e_{x}^{T} (t + \left. {s - h} \right|t)\overline{N}(t)e_{x} (t + \left. {s - h} \right|t)\} \\ & \quad \le \xi_{{}}^{T} (t + \left. s \right|t)E\{ \Xi_{4} \} \xi (t + \left. s \right|t), \\ \end{aligned}$$
(51)

where

$$\Xi_{4} = diag\{ \overline{S}(t),\; - \overline{S}(t),\;\overline{N}(t),\; - \overline{N}(t),\;0,\;0,\;0,\;0\} .$$

Now, the performance indices criterion is established for the closed-loop system. Using (48)–(51) and adding the \({\mathcal{H}}_{\infty }\) performance index given by (15), the function \(\Delta \overline{V}\) is defined as:

$$\begin{aligned} \Delta \overline{V} & \triangleq E\{ x(\left. {t + s + 1} \right|t)^{T} P_{1} (t)x(\left. {t + s + 1} \right|t)\} - x^{T} (\left. {t + s} \right|t)P_{1} (t)x(\left. {t + s} \right|t) \\ & \quad + E\{ e_{x} (\left. {t + s + 1} \right|t)^{T} Q_{1} (t)e_{x} (\left. {t + s + 1} \right|t)\} - e_{x}^{T} (\left. {t + s} \right|t)Q_{1} (t)e_{x} (\left. {t + s} \right|t) \\ & \quad + E\{ e_{f} (\left. {t + s + 1} \right|t)^{T} G_{1} (t)e_{f} (\left. {t + s + 1} \right|t)\} - e_{f}^{T} (\left. {t + s} \right|t)G_{1} (t)e_{f} (\left. {t + s} \right|t) \\ & \quad + E\{ x^{T} (\left. {t + s} \right|t)\overline{S}(t)x(\left. {t + s} \right|t) - x^{T} (\left. {t + s - h} \right|t)\overline{S}(t)x(\left. {t + s - h} \right|t)\} \\ & \quad + E\{ e_{x}^{T} (\left. {t + s} \right|t)\overline{N}(t)e_{x} (\left. {t + s} \right|t) - e_{x}^{T} (\left. {t + s - h} \right|t)\overline{N}(t)e_{x} (\left. {t + s - h} \right|t)\} \\ & \quad + E\{ y^{T} (\left. {t + s} \right|t)y(\left. {t + s} \right|t)\} - \gamma^{T} w^{T} (\left. {t + s} \right|t)w(\left. {t + s} \right|t). \\ \end{aligned}$$
(52)

Adding the event trigger condition (11) to \(\Delta \overline{V}\) yields:

$$\begin{aligned} & \Delta \overline{V} + \sigma [(\hat{x}(\left. {t + s} \right|t) - e(\left. {t + s} \right|t))^{T} \theta (\hat{x}(\left. {t + s} \right|t) - e(\left. {t + s} \right|t))] - e^{T} (\left. {t + s} \right|t)\theta e(\left. {t + s} \right|t) \\ & \quad \le \sum\limits_{i = 1}^{p} {\sum\limits_{j = 1}^{p} {\omega_{i} m_{j} } } \xi^{T} (\left. {t + s} \right|t)E\{ \overline{\Xi }_{ij} \} \xi (\left. {t + s} \right|t) + \delta , \\ \end{aligned}$$
(53)

where

$$\overline{\Xi }_{ij} = \Xi_{1ij} + \Xi_{2i} + \Xi_{3i} + \Xi_{4} = \Pi_{1ij}^{T} P_{1} (t)\Pi_{1ij} + \Pi_{2i}^{T} Q_{1} (t)\Pi_{2i} + \Psi ,$$
$$\Psi = \left[ {\begin{array}{*{20}c} { - P_{1} (t) + \sigma \theta + \overline{S}(t) + g^{2} \Gamma^{T} C^{T} 3G_{1} (t)C\Gamma } & * & * & * & * & * & * & * \\ 0 & { - \overline{S}(t) - Q_{1} (t)} & * & * & * & * & * & * \\ { - \sigma \theta } & 0 & {\overline{N}(t) + g^{2} \Gamma^{T} C^{T} 3G_{1} (t)C\Gamma - \sigma \theta } & * & * & * & * & * \\ 0 & 0 & 0 & { - \overline{N}(t)} & * & * & * & * \\ { - \sigma \theta } & 0 & { - \sigma \theta } & 0 & {(\sigma - 1)\theta } & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & {2G_{1} (t)} & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - \gamma^{2} } \\ \end{array} } \right].$$

It is first needed to show that \(\sum\nolimits_{i = 1}^{p} {\sum\nolimits_{j = 1}^{p} {\omega_{i} } m_{j} } \overline{\Xi }_{ij} < 0\) is established in Eq. (53). To this aim, since \(\sum\nolimits_{i = 1}^{p} {\omega_{i} } = 1\) and \(\sum\nolimits_{j = 1}^{p} {m_{j} = 1} ,\) then we have \(\sum\nolimits_{i = 1}^{p} {\sum\nolimits_{j = 1}^{p} {\omega_{i} } } (\omega_{i} - m_{j} )\Lambda_{ij} = 0,\) where \(\Lambda_{ij}\) are arbitrary symmetric matrices with proper dimensions, defined as follows:

$$\Lambda_{ij} = \left[ {\begin{array}{*{20}c} {T_{ij}^{11} } & * & * & * & * & * & * & * \\ {T_{ij}^{21} } & {T_{ij}^{22} } & * & * & * & * & * & * \\ {T_{ij}^{31} } & {T_{ij}^{32} } & {T_{ij}^{33} } & * & * & * & * & * \\ {T_{ij}^{41} } & {T_{ij}^{42} } & {T_{ij}^{43} } & {T_{ij}^{44} } & * & * & * & * \\ {T_{ij}^{51} } & {T_{ij}^{52} } & {T_{ij}^{53} } & {T_{ij}^{54} } & {T_{ij}^{55} } & * & * & * \\ {T_{ij}^{61} } & {T_{ij}^{62} } & {T_{ij}^{63} } & {T_{ij}^{64} } & {T_{ij}^{65} } & {T_{ij}^{66} } & * & * \\ {T_{ij}^{71} } & {T_{ij}^{72} } & {T_{ij}^{73} } & {T_{ij}^{74} } & {T_{ij}^{75} } & {T_{ij}^{76} } & {T_{ij}^{77} } & * \\ {T_{ij}^{81} } & {T_{ij}^{82} } & {T_{ij}^{83} } & {T_{ij}^{84} } & {T_{ij}^{85} } & {T_{ij}^{86} } & {T_{ij}^{87} } & {T_{ij}^{88} } \\ \end{array} } \right].$$
(54)

Therefore, \(\sum\nolimits_{i = 1}^{p} {\sum\nolimits_{j = 1}^{p} {\omega_{i} } } m_{j} \overline{\Xi }_{ij}\) can be expanded as:

$$\begin{array}{*{20}l} {\sum\limits_{{i = 1}}^{p} {\sum\limits_{{j = 1}}^{p} {\omega _{i} m_{j} \bar{\Xi }_{{ij}} } = } \sum\limits_{{i = 1}}^{p} {\sum\limits_{{j = 1}}^{p} {\omega _{i} m_{j} \bar{\Xi }_{{ij}} } + \sum\limits_{{i = 1}}^{p} {\sum\limits_{{j = 1}}^{p} {\omega _{i} (\omega _{j} - m_{j} + \lambda _{j} \omega _{j} - \lambda _{j} \omega _{j} )\Lambda _{{ij}} } } } } \hfill \\ { = \sum\limits_{{i = 1}}^{p} {\omega _{i}^{2} (\lambda _{i} \bar{\Xi }_{{ii}} - \lambda _{i} \Lambda _{{ii}} + \Lambda _{{ii}} )} + \sum\limits_{{i = 1}}^{{p - 1}} {\sum\limits_{{j = i + 1}}^{p} {\omega _{i} \omega _{j} (\lambda _{j} \bar{\Xi }_{{ij}} - \lambda _{j} \Lambda _{{ij}} + \Lambda _{{ij}} + \lambda _{i} \bar{\Xi }_{{ji}} - \lambda _{i} \Lambda _{{ji}} + \Lambda _{{ji}} )} } } \hfill \\ {\quad + \sum\limits_{{i = 1}}^{p} {\sum\limits_{{j = 1}}^{p} {(m_{j} - \lambda _{j} \omega _{j} )(\bar{\Xi }_{{ij}} - \Lambda _{{ij}} ).} } } \hfill \\ \end{array}$$
(55)

Considering the following equations:

$$\begin{array}{l} Q = \rho P_1^{ - 1}(t),\quad G = \rho P_1^{ - 1}{\Gamma ^T}{C^T}3{G_1}(t)P_1^{ - 1}C\Gamma ,\quad P = \rho Q_1^{ - 1},\quad {K_i}Q(t) = {Y_i},\quad P(t){L_i} = {M_i}(t),\\ S = \rho {\bar{S}}P_1^{ - 1}(t),\quad N = \rho {\bar{N}}Q_1^{ - 1}(t),\quad \rho P_1^{ - 1}\theta P_1^{ - 1} = {\bar{\theta}} ,\quad \rho P_1^{ - 1}T_{ij}^{11}P_1^{ - 1} = {\bar{T}}_{ij}^{11},\quad \rho P_1^{ - 1}T_{ij}^{21}P_1^{ - 1} = {\bar{T}}_{ij}^{21},\\ \rho P_1^{ - 1}T_{ij}^{22}P_1^{ - 1} = {\bar{T}}_{ij}^{22},\quad T_{ij}^{31}P_1^{ - 1} = {\bar{T}}_{ij}^{31},\quad T_{ij}^{32}P_1^{ - 1} = {\bar{T}}_{ij}^{32},\quad \rho P_1^{ - 1}T_{ij}^{33}P_1^{ - 1} = {\bar{T}}_{ij}^{33},\quad \rho Q_1^{ - 1}T_{ij}^{41}Q_1^{ - 1} = {\bar{T}}_{ij}^{41},\\ \rho Q_1^{ - 1}T_{ij}^{42}Q_1^{ - 1} = {\bar{T}}_{ij}^{42},\quad \rho Q_1^{ - 1}T_{ij}^{43}Q_1^{ - 1} = {\bar{T}}_{ij}^{43},\quad \rho Q_1^{ - 1}T_{ij}^{44}Q_1^{ - 1} = {\bar{T}}_{ij}^{44},\quad \rho Q_1^{ - 1}T_{ij}^{51}P_1^{ - 1} = {\bar{T}}_{ij}^{51},\quad \rho Q_1^{ - 1}T_{ij}^{52}P_1^{ - 1} = {\bar{T}}_{ij}^{52},\\ \rho Q_1^{ - 1}T_{ij}^{53}P_1^{ - 1} = {\bar{T}}_{ij}^{53},\quad \rho Q_1^{ - 1}T_{ij}^{54}P_1^{ - 1} = {\bar{T}}_{ij}^{54},\quad \rho Q_1^{ - 1}T_{ij}^{55}P_1^{ - 1} = {\bar{T}}_{ij}^{55},\quad \rho Q_1^{ - 1}T_{ij}^{61}P_1^{ - 1} = {\bar{T}}_{ij}^{61},\quad \rho Q_1^{ - 1}T_{ij}^{62}P_1^{ - 1} = {\bar{T}}_{ij}^{62},\\ \rho Q_1^{ - 1}T_{ij}^{63}P_1^{ - 1} = {\bar{T}}_{ij}^{63},\quad \rho Q_1^{ - 1}T_{ij}^{64}P_1^{ - 1} = {\bar{T}}_{ij}^{64},\quad \rho Q_1^{ - 1}T_{ij}^{65}P_1^{ - 1} = {\bar{T}}_{ij}^{65},\quad \rho Q_1^{ - 1}T_{ij}^{66}P_1^{ - 1} = {\bar{T}}_{ij}^{66},\quad \rho Q_1^{ - 1}T_{ij}^{71}P_1^{ - 1} = {\bar{T}}_{ij}^{71},\\ \rho Q_1^{ - 1}T_{ij}^{72}P_1^{ - 1} = {\bar{T}}_{ij}^{72},\quad \rho Q_1^{ - 1}T_{ij}^{73}P_1^{ - 1} = {\bar{T}}_{ij}^{73},\quad \rho Q_1^{ - 1}T_{ij}^{74}P_1^{ - 1} = {\bar{T}}_{ij}^{74},\quad \rho Q_1^{ - 1}T_{ij}^{75}P_1^{ - 1} = {\bar{T}}_{ij}^{75},\quad \rho Q_1^{ - 1}T_{ij}^{76}P_1^{ - 1} = {\bar{T}}_{ij}^{76},\\ \rho Q_1^{ - 1}T_{ij}^{77}P_1^{ - 1} = {\bar{T}}_{ij}^{77},\quad \rho Q_1^{ - 1}T_{ij}^{81}P_1^{ - 1} = {\bar{T}}_{ij}^{81},\quad \rho Q_1^{ - 1}T_{ij}^{82}P_1^{ - 1} = {\bar{T}}_{ij}^{82},\quad \rho Q_1^{ - 1}T_{ij}^{83}P_1^{ - 1} = {\bar{T}}_{ij}^{83},\quad \rho Q_1^{ - 1}T_{ij}^{84}P_1^{ - 1} = {\bar{T}}_{ij}^{84},\\ \rho Q_1^{ - 1}T_{ij}^{85}P_1^{ - 1} = {\bar{T}}_{ij}^{85},\quad \rho Q_1^{ - 1}T_{ij}^{86}P_1^{ - 1} = {\bar{T}}_{ij}^{86},\quad \rho Q_1^{ - 1}T_{ij}^{87}P_1^{ - 1} = {\bar{T}}_{ij}^{87},\quad \rho Q_1^{ - 1}T_{ij}^{88}P_1^{ - 1} = {\bar{T}}_{ij}^{88},\quad {\bar{G}} = \rho 2{G_1}(t), \end{array}$$

and multiplying both sides of the matrix inequalities (39), (40), and (41) in \(diag\left\{ {\rho^{{\frac{ - 1}{2}}} P_{1} (t),\;\rho^{{\frac{ - 1}{2}}} P_{1} (t),\;Q_{1} (t)\rho^{{\frac{ - 1}{2}}} ,\;Q_{1} (t)\rho^{{\frac{ - 1}{2}}} , \ldots ,\rho^{{\frac{ - 1}{2}}} I} \right\}\) and its transposes, we will have:

$$\left[ {\begin{array}{*{20}c} {\bar{\Upsilon }_{{11}} } & * \\ {\bar{\Upsilon }_{{21}} } & {\bar{\Upsilon }_{{22}} } \\ \end{array} } \right] < 0,$$
(56)
$$\left[ {\begin{array}{*{20}c} {\overline{F}_{11} } & * & * \\ {\overline{F}_{21} } & {\overline{F}_{22} } & * \\ {\overline{F}_{31} } & 0 & {\overline{F}_{33} } \\ \end{array} } \right] < 0,$$
(57)
$$\left[ {\begin{array}{*{20}c} {\overline{\Delta }_{11} } & * \\ {\overline{\Delta }_{21} } & {\overline{\Delta }_{22} } \\ \end{array} } \right] < 0,$$
(58)

where:

$$\overline{\Upsilon }_{11} = \left[ {\begin{array}{*{20}c} {\overline{\Upsilon }_{11}^{1} } & {(\overline{\Upsilon }_{11}^{2} )^{T} } \\ {\overline{\Upsilon }_{11}^{2} } & {\overline{\Upsilon }_{11}^{3} } \\ \end{array} } \right],$$
$$\begin{aligned} & \overline{\Upsilon }_{11}^{1} = \left[ {\begin{array}{*{20}c} {\overline{\Upsilon }_{11}^{11} } & * & * & * & * & * \\ {\overline{\lambda }_{i} T_{ii}^{21} } & {\overline{\lambda }_{i} {T}_{ii}^{22} + \lambda_{i} ( - \overline{S} - Q_{1} )} & * & * & * & * \\ {\overline{\lambda }_{i} T_{ii}^{31} - \lambda_{i} \sigma \theta } & {\overline{\lambda }_{i} T_{ii}^{32} } & {\overline{\Upsilon }_{11}^{13} } & * & * & * \\ {\overline{\lambda }_{i} T_{ii}^{41} } & {\overline{\lambda }_{i} T_{ii}^{42} } & {\overline{\lambda }_{i} T_{ii}^{43} } & {\overline{\lambda }_{i} T_{ii}^{44} - \overline{\lambda }_{i} \overline{N}} & * & * \\ {\overline{\lambda }_{i} T_{ii}^{51} - \sigma \lambda_{i} \theta } & {\overline{\lambda }_{i} T_{ii}^{52} } & {\overline{\lambda }_{i} T_{ii}^{53} - \lambda_{i} \sigma \theta } & {\overline{\lambda }_{i} T_{ii}^{54} } & {\overline{\lambda }_{i} T_{ii}^{55} + (\sigma - 1)\lambda_{i} \theta } & * \\ {\overline{\lambda }_{i} T_{ii}^{61} } & {\overline{\lambda }_{i} T_{ii}^{62} } & {\overline{\lambda }_{i} T_{ii}^{63} } & {\overline{\lambda }_{i} T_{ii}^{64} } & {\overline{\lambda }_{i} T_{ii}^{65} } & {\overline{\lambda }_{i} T_{ii}^{66} } \\ \end{array} } \right], \\ & \overline{\Upsilon }_{11}^{11} = \lambda_{i} ( - P_{1} + \overline{S} + \sigma \theta + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma ) + \overline{\lambda }_{i} T_{ii}^{11} ,\quad \overline{\Upsilon }_{11}^{13} = \overline{\lambda }_{i} T_{ii}^{33} + \lambda_{i} (\overline{N} + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma - \sigma \theta ), \\ \end{aligned}$$
$$\overline{\Upsilon }_{11}^{2} = \left[ {\begin{array}{*{20}c} {\overline{\lambda }_{i} T_{ii}^{61} } & {\overline{\lambda }_{i} T_{ii}^{62} } & {\overline{\lambda }_{i} T_{ii}^{63} } & {\overline{\lambda }_{i} T_{ii}^{64} } & {\overline{\lambda }_{i} T_{ii}^{65} } & {\overline{\lambda }_{i} T_{ii}^{66} } \\ {\overline{\lambda }_{i} T_{ii}^{71} } & {\overline{\lambda }_{i} T_{ii}^{72} } & {\overline{\lambda }_{i} T_{ii}^{73} } & {\overline{\lambda }_{i} T_{ii}^{74} } & {\overline{\lambda }_{i} T_{ii}^{75} } & {\overline{\lambda }_{i} T_{ii}^{76} } \\ \end{array} } \right],$$
$$\overline{\Upsilon }_{11}^{3} = \left[ {\begin{array}{*{20}c} {\overline{\lambda }_{i} T_{ii}^{67} + \overline{\lambda }_{i} 2G_{1} } & * \\ {\overline{\lambda }_{i} T_{ii}^{76} } & { - \overline{\lambda }_{i} \gamma^{2} - \overline{\lambda }_{i} T_{ii}^{77} } \\ \end{array} } \right],$$
$$\overline{\Upsilon }_{21} = \left[ {\begin{array}{*{20}c} {\sqrt {\lambda_{i} } A_{ui} } & {\sqrt {\lambda_{i} } (A_{di} + \overline{\nu }B_{i} K_{i} )} & 0 & { - \sqrt {\lambda_{i} } \overline{\nu }B_{i} K_{i} } & 0 & { - \sqrt {\lambda_{i} } \overline{\nu }B_{i} K_{i} } & {\sqrt {\lambda_{i} } B_{i} } & {\sqrt {\lambda_{i} } B_{wi} } \\ 0 & {\sqrt {\lambda_{i} } gB_{i} K_{i} } & 0 & { - \sqrt {\lambda_{i} } gB_{i} K_{i} } & 0 & { - \sqrt {\lambda_{i} } gB_{i} K_{i} } & 0 & 0 \\ {(\overline{\iota } + 1)\sqrt {\lambda_{i} } L_{i} C} & 0 & {\sqrt {\lambda_{i} } (A_{ui} - L_{i} C)} & {\sqrt {\lambda_{i} } A_{di} } & 0 & 0 & {\sqrt {\lambda_{i} } B_{i} } & {\sqrt {\lambda_{i} } B_{wi} } \\ {\sqrt {\lambda_{i} } lL_{i} C} & 0 & {\sqrt {\lambda_{i} } (A_{ui} - L_{i} C)} & {\sqrt {\lambda_{i} } A_{di} } & 0 & 0 & {\sqrt {\lambda_{i} } B_{i} } & {\sqrt {\lambda_{i} } B_{wi} } \\ \end{array} } \right],$$
$$\overline{\Upsilon }_{22} = diag\{ - P_{1}^{ - 1} ,\; - P_{1}^{ - 1} ,\; - I,\; - I\} ,$$
$$\overline{F}_{11} = \left[ {\begin{array}{*{20}c} {\overline{F}_{11}^{11} } & * & * & * & * & * & * & * \\ {\overline{F}_{11}^{21} } & {\overline{F}_{11}^{22} } & * & * & * & * & * & * \\ {\overline{F}_{11}^{31} } & {\overline{F}_{11}^{32} } & {\overline{F}_{11}^{33} } & * & * & * & * & * \\ {\overline{F}_{11}^{41} } & {\overline{F}_{11}^{42} } & {\overline{F}_{11}^{43} } & {\overline{F}_{11}^{44} } & * & * & * & * \\ {\overline{F}_{11}^{51} } & {\overline{F}_{11}^{52} } & {\overline{F}_{11}^{53} } & {\overline{F}_{11}^{54} } & {\overline{F}_{11}^{55} } & * & * & * \\ {\overline{F}_{11}^{61} } & {\overline{F}_{11}^{62} } & {\overline{F}_{11}^{63} } & {\overline{F}_{11}^{64} } & {\overline{F}_{11}^{65} } & {\overline{F}_{11}^{66} } & * & * \\ {\overline{F}_{11}^{71} } & {\overline{F}_{11}^{72} } & {\overline{F}_{11}^{73} } & {\overline{F}_{11}^{74} } & {\overline{F}_{11}^{75} } & {\overline{F}_{11}^{76} } & {\overline{F}_{11}^{77} } & * \\ {\overline{F}_{11}^{81} } & {\overline{F}_{11}^{82} } & {\overline{F}_{11}^{83} } & {\overline{F}_{11}^{84} } & {\overline{F}_{11}^{85} } & {\overline{F}_{11}^{86} } & {\overline{F}_{11}^{87} } & {\overline{F}_{11}^{88} } \\ \end{array} } \right],$$
$$\begin{aligned} & \overline{F}_{11}^{11} = \lambda_{ij} ( - P_{1} + \sigma \theta + \overline{S} + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma ) + \overline{\lambda }_{j} T_{ij}^{11} + \overline{\lambda }_{i} T_{ji}^{11} ,\quad \overline{F}_{11}^{21} = - \lambda_{ij} \sigma \theta + \overline{\lambda }_{j} T_{ij}^{21} + \overline{\lambda }_{i} T_{ji}^{21} , \\ & \overline{F}_{11}^{22} = \lambda_{ij} ( - Q_{1} - \overline{S}) + \overline{\lambda }_{j} T_{ij}^{22} + \overline{\lambda }_{i} T_{ji}^{22} ,\quad \overline{F}_{11}^{31} = - \lambda_{ij} \sigma \theta + \overline{\lambda }_{j} T_{ij}^{31} + \overline{\lambda }_{i} T_{ji}^{31} , \\ & \overline{F}_{11}^{32} = \overline{\lambda }_{j} T_{ij}^{32} + \overline{\lambda }_{i} T_{ji}^{32} ,\quad \overline{F}_{11}^{33} = \overline{\lambda }_{j} T_{ij}^{33} + \overline{\lambda }_{i} T_{ji}^{33} + \lambda_{ij} (\overline{N} + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma - \sigma \theta ), \\ & \overline{F}_{11}^{41} = \overline{\lambda }_{j} T_{ij}^{41} + \overline{\lambda }_{i} T_{ji}^{41} ,\quad \overline{F}_{11}^{42} = \overline{\lambda }_{j} T_{ij}^{42} + \overline{\lambda }_{i} T_{ji}^{42} ,\quad \overline{F}_{11}^{43} = \overline{\lambda }_{j} T_{ij}^{43} + \overline{\lambda }_{i} T_{ji}^{43} ,\quad \overline{F}_{11}^{44} = \overline{\lambda }_{j} T_{ij}^{44} + \overline{\lambda }_{i} T_{ji}^{44} - \lambda_{ij} \overline{N}, \\ & \overline{F}_{11}^{51} = \overline{\lambda }_{j} \overline{T}_{ij}^{51} + \overline{\lambda }_{i} \overline{T}_{ji}^{51} - (\sigma \theta )\lambda_{ij} ,\quad \overline{F}_{11}^{52} = \overline{\lambda }_{j} T_{ij}^{52} + \overline{\lambda }_{i} T_{ji}^{52} ,\quad \overline{F}_{11}^{53} = \overline{\lambda }_{j} T_{ij}^{53} + \overline{\lambda }_{i} T_{ji}^{53} - (\sigma \theta )\lambda_{ij} , \\ & \overline{F}_{11}^{54} = \overline{\lambda }_{j} T_{ij}^{54} + \overline{\lambda }_{i} T_{ji}^{54} ,\quad \overline{F}_{11}^{55} = \overline{\lambda }_{j} T_{ij}^{55} + \overline{\lambda }_{i} T_{ji}^{55} + \lambda_{ij} (\sigma - 1)\theta ,\quad \overline{F}_{11}^{61} = \overline{\lambda }_{j} T_{ij}^{61} + \overline{\lambda }_{i} T_{ji}^{61} ,\quad \overline{F}_{11}^{62} = \overline{\lambda }_{j} T_{ij}^{62} + \overline{\lambda }_{i} T_{ji}^{62} , \\ \end{aligned}$$
$$\begin{aligned} & \overline{F}_{11}^{63} = \overline{\lambda }_{j} T_{ij}^{63} + \overline{\lambda }_{i} T_{ji}^{63} ,\quad \overline{F}_{11}^{64} = \overline{\lambda }_{j} T_{ij}^{64} + \overline{\lambda }_{i} T_{ji}^{64} ,\quad \overline{F}_{11}^{65} = \overline{\lambda }_{j} T_{ij}^{65} + \overline{\lambda }_{i} T_{ji}^{65} ,\quad \overline{F}_{11}^{66} = \overline{\lambda }_{j} T_{ij}^{66} + \overline{\lambda }_{i} T_{ji}^{66} \\ & \overline{F}_{11}^{71} = \overline{\lambda }_{j} T_{ij}^{71} + \overline{\lambda }_{i} \overline{T}_{ji}^{71} ,\quad \overline{F}_{11}^{72} = \overline{\lambda }_{j} T_{ij}^{72} + \overline{\lambda }_{i} T_{ji}^{72} ,\quad \overline{F}_{11}^{73} = \overline{\lambda }_{j} T_{ij}^{73} + \overline{\lambda }_{i} T_{ji}^{73} ,\quad \overline{F}_{11}^{74} = \overline{\lambda }_{j} T_{ij}^{74} + \overline{\lambda }_{i} T_{ji}^{74} , \\ & \overline{F}_{11}^{75} = \overline{\lambda }_{j} T_{ij}^{75} + \overline{\lambda }_{i} T_{ji}^{75} ,\quad \overline{F}_{11}^{76} = \overline{\lambda }_{j} T_{ij}^{76} + \overline{\lambda }_{i} T_{ji}^{76} ,\quad \overline{F}_{11}^{77} = \overline{\lambda }_{j} T_{ij}^{77} + \overline{\lambda }_{i} T_{ji}^{77} + \lambda_{ij} 2G_{1} , \\ & \overline{F}_{11}^{81} = \overline{\lambda }_{j} T_{ij}^{81} + \overline{\lambda }_{i} \overline{T}_{ji}^{81} ,\quad \overline{F}_{11}^{82} = \overline{\lambda }_{j} T_{ij}^{82} + \overline{\lambda }_{i} T_{ji}^{82} ,\quad \overline{F}_{11}^{83} = \overline{\lambda }_{j} T_{ij}^{83} + \overline{\lambda }_{i} T_{ji}^{83} ,\quad \overline{F}_{11}^{84} = \overline{\lambda }_{j} T_{ij}^{84} + \overline{\lambda }_{i} T_{ji}^{84} , \\ & \overline{F}_{11}^{85} = \overline{\lambda }_{j} T_{ij}^{85} + \overline{\lambda }_{i} T_{ji}^{85} ,\quad \overline{F}_{11}^{86} = \overline{\lambda }_{j} T_{ij}^{86} + \overline{\lambda }_{i} T_{ji}^{86} ,\quad \overline{F}_{11}^{87} = \overline{\lambda }_{j} T_{ij}^{87} + \overline{\lambda }_{i} T_{ji}^{87} ,\quad \overline{F}_{11}^{88} = \overline{\lambda }_{j} T_{ij}^{88} + \overline{\lambda }_{i} T_{ji}^{88} - \lambda_{ij} \gamma^{2} , \\ \end{aligned}$$
$$\overline{F}_{21} = \left[ {\begin{array}{*{20}c} {\sqrt {\lambda_{j} } A_{ui} } & {\sqrt {\lambda_{j} } (A_{di} + \overline{\nu }B_{i} K_{j} )} & 0 & { - \sqrt {\lambda_{j} } \overline{\nu }B_{i} K_{j} } & 0 & { - \sqrt {\lambda_{j} } \overline{\nu }B_{i} K_{j} } & {\sqrt {\lambda_{j} } B_{i} } & {\sqrt {\lambda_{j} } B_{wi} } \\ 0 & {\sqrt {\lambda_{j} } gB_{i} K_{j} } & 0 & { - \sqrt {\lambda_{j} } gB_{i} K_{j} } & 0 & { - \sqrt {\lambda_{j} } gB_{i} K_{j} } & 0 & 0 \\ {(\overline{\iota } + 1)\sqrt {\lambda_{j} } L_{j} C} & 0 & {\sqrt {\lambda_{j} } (A_{ui} - L_{j} C)} & {\sqrt {\lambda_{j} } A_{di} } & 0 & 0 & {\sqrt {\lambda_{j} } B_{i} } & {\sqrt {\lambda_{j} } B_{wi} } \\ {\sqrt {\lambda_{j} } lL_{j} C} & 0 & {\sqrt {\lambda_{j} } (A_{ui} - L_{j} C)} & {\sqrt {\lambda_{j} } A_{di} } & 0 & 0 & {\sqrt {\lambda_{j} } B_{i} } & {\sqrt {\lambda_{j} } B_{wi} } \\ \end{array} } \right],$$
$$\overline{F}_{22} = diag\{ - P_{1}^{ - 1} ,\; - P_{1}^{ - 1} ,\; - I,\; - I\} ,$$
$$\overline{F}_{31} = \left[ {\begin{array}{*{20}c} {\sqrt {\lambda_{i} } A_{uj} } & {\sqrt {\lambda_{i} } (A_{dj} + \overline{\nu }B_{j} K_{i} )} & 0 & { - \sqrt {\lambda_{i} } \overline{\nu }B_{j} K_{i} } & 0 & { - \sqrt {\lambda_{i} } \overline{\nu }B_{j} K_{i} } & {\sqrt {\lambda_{i} } B_{j} } & {\sqrt {\lambda_{i} } B_{wj} } \\ 0 & {\sqrt {\lambda_{i} } gB_{j} K_{i} } & 0 & { - \sqrt {\lambda_{i} } gB_{j} K_{i} } & 0 & { - \sqrt {\lambda_{i} } gB_{j} K_{i} } & 0 & 0 \\ {(\overline{\iota } + 1)\sqrt {\lambda_{i} } L_{i} C} & 0 & {\sqrt {\lambda_{i} } (A_{uj} - L_{i} C)} & {\sqrt {\lambda_{i} } A_{dj} } & 0 & 0 & {\sqrt {\lambda_{i} } B_{j} } & {\sqrt {\lambda_{i} } B_{wj} } \\ {\sqrt {\lambda_{i} } lL_{i} C} & 0 & {\sqrt {\lambda_{i} } (A_{uj} - L_{i} C)} & {\sqrt {\lambda_{i} } A_{dj} } & 0 & 0 & {\sqrt {\lambda_{i} } B_{j} } & {\sqrt {\lambda_{i} } B_{wj} } \\ \end{array} } \right],$$
$$\overline{F}_{33} = diag\{ - P_{1}^{ - 1} ,\; - P_{1}^{ - 1} ,\; - I,\; - I\} ,$$
$$\begin{aligned} & \overline{\Delta }_{11} = \left[ {\begin{array}{*{20}c} {\overline{\Delta }_{11}^{11} } & * & * & * & * & * & * & * \\ { - T_{ij}^{21} } & {(Q_{1} - \overline{S}) - T_{ij}^{22} } & * & * & * & * & * & * \\ { - T_{ij}^{31} - \sigma \theta } & { - T_{ij}^{32} } & {\overline{\Delta }_{11}^{33} } & * & * & * & * & * \\ { - T_{ij}^{41} } & { - T_{ij}^{42} } & { - T_{ij}^{43} } & { - T_{ij}^{44} - \overline{N}} & * & * & * & * \\ {\begin{array}{*{20}c} { - T_{ij}^{51} - \sigma \theta } \\ { - T_{ij}^{61} } \\ \end{array} } & {\begin{array}{*{20}c} { - T_{ij}^{52} } \\ { - T_{ij}^{62} } \\ \end{array} } & {\begin{array}{*{20}c} { - T_{ij}^{53} - \sigma \theta } \\ { - T_{ij}^{63} } \\ \end{array} } & {\begin{array}{*{20}c} { - T_{ij}^{54} } \\ { - T_{ij}^{64} } \\ \end{array} } & {\begin{array}{*{20}c} { - T_{ij}^{55} + (\sigma - 1)\theta } \\ { - T_{ij}^{65} } \\ \end{array} } & {\begin{array}{*{20}c} * \\ { - T_{ij}^{66} } \\ \end{array} } & {\begin{array}{*{20}c} * \\ * \\ \end{array} } & {\begin{array}{*{20}c} * \\ * \\ \end{array} } \\ { - T_{ij}^{71} } & { - T_{ij}^{72} } & { - T_{ij}^{73} } & { - T_{ij}^{74} } & { - T_{ij}^{75} } & { - T_{ij}^{76} } & { - T_{ij}^{77} + 2G_{1} } & * \\ { - T_{ij}^{81} } & { - T_{ij}^{82} } & { - T_{ij}^{83} } & { - T_{ij}^{84} } & { - T_{ij}^{85} } & { - T_{ij}^{86} } & { - T_{ij}^{87} } & { - \gamma^{2} - T_{ij}^{88} } \\ \end{array} } \right], \\ & \overline{\Delta }_{11}^{33} = - T_{ij}^{33} + \overline{N} + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma - \sigma \theta ,\quad \overline{\Delta }_{11}^{11} = ( - P_{1} + \sigma \theta + \overline{S} + g^{2} \Gamma^{T} C^{T} 3G_{1} C\Gamma ) - T_{ij}^{11} , \\ \end{aligned}$$
$$\overline{\Delta }_{21} = \left[ {\begin{array}{*{20}c} {A_{ui} } & {(A_{di} + \overline{\nu }B_{i} K_{j} )} & 0 & { - \overline{\nu }B_{i} K_{j} } & 0 & { - \overline{\nu }B_{i} K_{j} } & {B_{i} } & {B_{wi} } \\ 0 & {gB_{i} K_{j} } & 0 & { - gB_{i} K_{j} } & 0 & { - gB_{i} K_{j} } & 0 & 0 \\ {(\overline{\iota } + 1)L_{j} C} & 0 & {(A_{ui} - L_{j} C)} & {A_{di} } & 0 & 0 & {B_{i} } & {B_{wi} } \\ {lL_{j} C} & 0 & {(A_{ui} - L_{j} C)} & {A_{di} } & 0 & 0 & {B_{i} } & {B_{wi} } \\ \end{array} } \right],$$
$$\overline{\Delta }_{22} = diag\{ - P_{1}^{ - 1} ,\; - P_{1}^{ - 1} ,\; - I,\; - I\} .$$

Using the Schur complement theory and Eqs. (56)–(58), the following equations are extracted:

$$\lambda_{i} \overline{\Xi }_{ii} - \lambda_{i} \Lambda_{ii} + \Lambda_{ii} < 0;\quad i = 1, \ldots ,p,$$
(59)
$$- \lambda_{j} \Lambda_{ij} + \Lambda_{ij} + \lambda_{i} \overline{\Xi }_{ji} - \lambda_{i} \Lambda_{ji} + \Lambda_{ji} + \lambda_{j} \overline{\Xi }_{ij} < 0;\quad 1 \le i < j < p,$$
(60)
$$- \Lambda_{ij} + \overline{\Xi }_{ij} < 0;\quad i,\;j = 1, \ldots ,p.$$
(61)

Therefore, under the condition \(m_{j} - \lambda_{j} \omega_{i} \ge 0,\) from Remark 1, the inequality \(\sum\nolimits_{i = 1}^{p} {\sum\nolimits_{j = 1}^{p} {\omega_{i} m_{j} } } \Xi_{ij} < 0\) is satisfied. Hence, if \(\left\| {\xi (\left. {t + s} \right|t)} \right\|^{2} \ge (\lambda_{\min } (\overline{\Xi }_{ij} ))^{ - 1} \delta\) the following inequality is established:

$$\begin{aligned} \Delta \overline{V} & = \Delta V + E\{ y^{T} (\left. {t + s} \right|t)y(\left. {t + s} \right|t)\} - \gamma^{T} w^{T} (\left. {t + s} \right|t)w(\left. {t + s} \right|t) \\ & \le \left\{ {\sum\limits_{i = 1}^{p} {\sum\limits_{j = 1}^{p} {\xi^{T} (\left. {t + s} \right|t)\omega_{i} m_{j} E\{ \overline{\Xi }_{ij} \} \xi (\left. {t + s} \right|t)} } } \right\} + \delta \\ & \le - \lambda_{\min } ( - \overline{\Xi }_{ij} )\left\| {\xi (\left. {t + s} \right|t)} \right\|^{2} + \delta \le 0. \\ \end{aligned}$$
(62)

Summing up both sides of the inequality (62) from \(t = 0\) to \(t = \infty\) under zero initial condition and considering \(E\{ x_{\infty }^{T} (t)Q_{1} (t)x_{\infty } (t)\} \ge 0\), \(E\{ (e_{x} (t))_{\infty }^{T} Q_{1} (t)(e_{x} (t))_{\infty } \} \ge 0\), and \(E\{ (e_{f} (t))_{\infty }^{T} Q_{1} (t)(e_{f} (t))_{\infty } \} \ge 0\), we will have:

$$E\left\{ {\sum\limits_{t = 0}^{\infty } {y(t + \left. s \right|t)^{T} (t + \left. s \right|t)} } \right\} \le \sum\limits_{t = 0}^{\infty } {\gamma^{2} w^{T} (t + \left. s \right|t)w(t + \left. s \right|t)} .$$

This expression shows satisfying the \({\mathcal{H}}_{\infty }\) performance index defined in (15). Moreover, considering inequality (42), and employing the Schur complement theory, and assuming that disturbance is norm-bounded (Assumption 1), the following inequality will be extracted:

$$E\left\{ {\sum\limits_{t = 0}^{\infty } {y(t + \left. s \right|t)^{T} (t + \left. s \right|t)} } \right\} \le x^{T} (t)P(t)x(t) + \gamma^{2} \overline{w } \le \rho (t).$$

Therefore, the \({\mathcal{H}}_{2}\) performance index described in (16) is established.

By pre- and post-multiplying the inequality (43) in \(diag\left\{ {\rho^{{ - \frac{1}{2}}} P(t),\;\rho^{{ - \frac{1}{2}}} P(t)} \right\}\) and its transpose, respectively, we will have:

$$\left[ {\begin{array}{*{20}c} { - Q^{ - 1} } & * \\ {\sqrt {\overline{\nu }} K_{i} } & { - u_{\max }^{2} I} \\ \end{array} } \right] < 0,$$
(63)

using the Schur complement theory, the inequality (63) is written as:

$$- \rho^{ - 1} P(t) + \frac{{\overline{\nu }}}{{u_{\max }^{2} }}K^{T} (t)K(t) \le 0.$$
(64)

By multiplying the right side in \(x(\left. {t + s} \right|t)\) and multiplying the left side in its transpose, the following inequality will yield:

$$- x^{T} (\left. {t + s} \right|t)\rho^{ - 1} P(t)x(\left. {t + s} \right|t) + \frac{{\overline{\nu }}}{{u_{\max }^{2} }}((K(t)x(\left. {t + s} \right|t))^{T} (K(t)x(\left. {t + s} \right|t)) \le 0.$$
(65)

Using the control law (31), we will have:

$$\frac{{\overline{\nu }}}{{u_{\max }^{2} }}(u^{T} (\left. {t + s} \right|t)u(\left. {t + s} \right|t)) \le x^{T} (\left. {t + s} \right|t)\rho^{ - 1} P(t)x(\left. {t + s} \right|t) \le 1,$$
(66)

that yields the following expression:

$$\overline{\nu }(u^{T} (\left. {t + s} \right|t)u(\left. {t + s} \right|t)) \le u_{\max }^{2} ,$$
(67)

where the input constraint (17) is satisfied.

Now, to prove the stochastic stability, we use \(\Delta \overline{V} \le 0\) obtained in (61) and consider \(w(\left. {t + s} \right|t) = 0.\) Therefore, we have:

$$E\{ \Delta V\} = E\{ \xi^{T} (\left. {t + s} \right|t)\overline{\Xi }_{ij} \xi (\left. {t + s} \right|t)\} + \delta \le 0,$$
(68)

which is rewritten as:

$$E\{ \Delta V\} \le - \lambda_{\min } ( - \overline{\Xi }_{ij} )\xi^{T} (\left. {t + s} \right|t)\xi (\left. {t + s} \right|t) + \delta .$$
(69)

Therefore, based on the definition of the vector \(\xi (\left. {t + s} \right|t),\) we have:

$$E\{ \Delta V\} \le - \lambda_{\min } ( - \overline{\Xi }_{ij} )x^{T} (\left. {t + s} \right|t)x(\left. {t + s} \right|t).$$
(70)

Calculating the mathematical expectation of both sides of the above inequality and summing up both sides between \(t = 0\) and \(t = d\) for each \(d \ge 0,\) we will have:

$$E\{ V(x(\left. {t + s + d} \right|t))\} - V(x(0)) \le - \lambda_{\min } ( - \overline{\Xi }_{ij} )E\left\{ {\sum\limits_{t = 0}^{d} {x^{T} (\left. {t + s} \right|t)x(\left. {t + s} \right|t)} } \right\},$$
(71)

which is equivalent to:

$$E\left\{ {\sum\limits_{t = 0}^{d} {\left\| {x(\left. {t + s} \right|t)} \right\|}^{2} } \right\} \le (\lambda_{\min } ( - \overline{\Xi }_{ij} ))^{ - 1} (V(x(0)) - E\{ V(x(\left. {t + s + d} \right|t))\} ).$$
(72)

The above equation, \(x(0)\) indicates the initial condition. Considering \(E\{ x_{\infty }^{T} (t)P(t)x_{\infty } (t)\} \ge 0\) we have:

$$E\left\{ {\sum\limits_{t = 0}^{d} {\left\| {x(\left. {t + s} \right|t)} \right\|}^{2} \left| {x(0)} \right.} \right\} \le x^{T} (0)Yx(0).$$
(73)

Hence, based on Definition 1, for the bounded matrix \(Y = (\lambda_{\min } ( - \overline{\Xi }_{ij} ))^{ - 1} P(t) > 0,\) the condition (73) is satisfied that leads to the stochastic stability of the closed loop system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayadian, N., Abedi, M. & Jahangiri, F. Observer-Based Event-Triggered Fault Tolerant MPC for Networked IT-2 T–S Fuzzy Systems. Int. J. Fuzzy Syst. 26, 753–776 (2024). https://doi.org/10.1007/s40815-023-01632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01632-9

Keywords

Navigation