Skip to main content
Log in

General Type-2 Fuzzy Gain Scheduling PID Controller with Application to Power-Line Inspection Robots

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a general type-2 fuzzy gain scheduling PID (GT2FGS-PID) controller is presented to achieve self-balance adjustment of the power-line inspection (PLI) robot system. As the PLI robot system is an under-actuated nonlinear system, obtaining the full information of the four-state variables is necessary to balance the PLI robot. However, as the number of input variables increases, the number of control rules increases exponentially, making the design of the fuzzy controller extremely complex. Therefore, the proposed controller prevents the problem of rule explosion using information fusion and then simplifies the control design. Moreover, the particle swarm optimization algorithm is used to select improved controller parameters and make the controller achievable. In this paper, the control performance and anti-interference ability of the traditional PID control, type-1 fuzzy control, interval type-2 fuzzy control, and general type-2 fuzzy control methods are compared. By means of numerical simulation, we can conclude that the GT2FGS-PID controller exhibits superior stability and robustness over other controllers for the PLI robot system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Jin, L., Li, S., Luo, X., et al.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018)

    Google Scholar 

  2. Yang, C., Wu, H., Li, Z., et al.: Mind control of a robotic arm with visual fusion technology. IEEE Trans. Ind. Inform. 14(9), 3822–3830 (2018)

    Google Scholar 

  3. Li, J., Zhang, Y., Li, S., et al.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inform. 14(8), 3416–3425 (2018)

    Google Scholar 

  4. Shin, S.Y., Lee, J.J.: Fuzzy sliding mode control for an under-actuated system with mismatched uncertainties. Artif. Life Robot. 15(3), 355–358 (2010)

    Google Scholar 

  5. Li, H., Savkin, A.V.: Wireless sensor network based navigation of micro flying robots in the industrial internet of things. IEEE Trans. Ind. Inform. 14(8), 3524–3533 (2018)

    Google Scholar 

  6. Choukchou-Braham, A., Cherki, B., Djemai, M., et al.: Analysis and control of underactuated mechanical systems. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Dian, S., Hoang, S., Pu, M., et al.: Gain scheduling based backstepping control for motion balance adjusting of a power-line inspection robot[C]. In: Control Conference IEEE, pp. 441–446 (2016)

  8. Dian, S., Chen, L., Hoang, S., et al.: Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots. IEEE/CAA J. Automat. Sinica 6(1), 198–208 (2019)

    Google Scholar 

  9. Huang, J., Ding, F., Wang, Y.: Sliding mode control with nonlinear disturbance observer for a class of underactuated system. In: Control Conference IEEE, pp. 541–546 (2013)

  10. Xin, X., Liu, Y.: Trajectory tracking control of variable length pendulum by partial energy shaping. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1544–1556 (2014)

    MathSciNet  Google Scholar 

  11. Fang, Y., Ma, B., Wang, P., et al.: A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans. Control Syst. Technol. 20(1), 241–248 (2011)

    Google Scholar 

  12. Huang, M., Xian, B., Diao, C., et al.: Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In: American Control Conference IEEE, pp. 2076–2081 (2010)

  13. Cherrat, N., Boubertakh, H., Arioui, H.: An adaptive fuzzy PID control for a class of uncertain nonlinear underactuated systems. In: International Conference on Modelling, Identification and Control. IEEE, pp. 677-682 (2017)

  14. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Tran, H.D., Guan, Z.H., Dang, X.K., et al.: A normalized PID controller in networked control systems with varying time delays. ISA Trans. 52(5), 592–599 (2013)

    Google Scholar 

  16. Kim, J.H., Oh, S.J.: A fuzzy PID controller for nonlinear and uncertain systems. Soft Comput. 4(2), 123–129 (2000)

    MathSciNet  Google Scholar 

  17. Qiao, W.Z., Mizumoto, M.: PID type fuzzy controller and parameters adaptive method. Fuzzy Sets Syst. 78(1), 23–35 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Carvajal, J., Chen, G., Ogmen, H.: Fuzzy PID controller: design, performance evaluation, and stability analysis. Inform. Sci. 123(3–4), 249–270 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Alavandar, S., Nigam, M.J.: Fuzzy PD+ I control of a six DOF robot manipulator. Ind. Robot 35(2), 125–132 (2008)

    Google Scholar 

  20. Kumbasar, T., Hagras, H.: A self-tuning zSlices-based general type-2 fuzzy PI controller. IEEE Trans. Fuzzy Syst. 23(4), 991–1013 (2015)

    Google Scholar 

  21. Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)

    Google Scholar 

  22. El-Bardini, M., El-Nagar, A.M.: Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA Trans. 53(3), 732–743 (2014)

    Google Scholar 

  23. Castillo, O., Melin, P.: Type-2 fuzzy logic: theory and applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Press, New York (2006)

    Google Scholar 

  25. Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. Comput. Intell. Mag. IEEE 2(1), 30–43 (2007)

    Google Scholar 

  26. Zhao, T., Dian, S.: State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links. IEEE Trans. Fuzzy Syst. 26(2), 951–966 (2018)

    Google Scholar 

  27. Zhao, T., Dian, S.: Delay-dependent stabilization of discrete-time interval type-2 T-S fuzzy systems with time-varying delay. J. Franklin Instit. 354(3), 1542–1567 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Lam, H.K., Li, H., Deters, C., et al.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Elect. 61(2), 956–968 (2014)

    Google Scholar 

  29. Li, H., Yin, S., Pan, Y., et al.: Model reduction for interval type-2 Takagi–Sugeno fuzzy systems. Automatica 61(11), 308–314 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inform. Control 4(4), 771–783 (2008)

    Google Scholar 

  31. Jhang, J.Y., Lin, C.J., Lin, C.T., et al.: Navigation control of mobile robots using an interval type-2 fuzzy controller based on dynamic-group particle swarm optimization. Int. J. Control Automat. Syst. 16(5), 2446–2457 (2018)

    Google Scholar 

  32. Huang, J., Ri, M.H., Wu, D., et al.: Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum. IEEE Trans. Fuzzy Syst. 26(4), 2030–2038 (2018)

    Google Scholar 

  33. Eyoh, I., John, R., De Maere, G.: Interval type-2 A-intuitionistic fuzzy logic for regression problems. IEEE Trans. Fuzzy Syst. 26(4), 2396–2408 (2018)

    Google Scholar 

  34. Eyoh, I., John, R., De Maere, G., et al.: Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Trans. Fuzzy Syst. 26(5), 2672–2685 (2018)

    Google Scholar 

  35. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Zhao, T., Liu, J., Dian, S.: Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inform. Sci. 483, 153–173 (2019)

    MathSciNet  Google Scholar 

  37. Li, C., Yi, J., Wang, H., et al.: Interval data driven construction of shadowed sets with application to linguistic word modelling. Inform. Sci. 507, 503–521 (2020)

    Google Scholar 

  38. Sanchez, M.A., Castillo, O., Castro, J.R.: Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Pergamon Press, Inc, Oxford (2015)

    Google Scholar 

  39. Castillo, O., Amador-Angulo, L., Castro, J.R., et al.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inform. Sci. 354, 257–274 (2016)

    Google Scholar 

  40. Tai, K., El-Sayed, A.R., Biglarbegian, M., et al.: Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Ontiveros, E., Melin, P., Castillo, O.: High order \(\alpha\)-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)

    Google Scholar 

  42. Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inform. Sci. 460–461, 476–496 (2018)

    Google Scholar 

  43. Ghaemi, M., Hosseini-Sani, S.K., Khooban, M.H.: Direct adaptive general type-2 fuzzy control for a class of uncertain non-linear systems. IET Sci. Meas. Technol. 8(6), 518–527 (2014)

    Google Scholar 

  44. Castillo, O., Cervantes, L., Soria, J., et al.: A generalized type-2 fuzzy granular approach with applications to aerospace. Inform. Sci. 354, 165–177 (2016)

    Google Scholar 

  45. Cervantes, L., Castillo, O.: Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inform. Sci. 324, 247–256 (2015)

    Google Scholar 

  46. Xie, X., Yue, D., Peng, C.: Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach. IEEE Trans. Fuzzy Syst. 25(5), 1281–1292 (2017)

    Google Scholar 

  47. Chang, X.H.: Robust nonfragile \(H_\infty\) fuzzy systems with linear fractional parametric uncertainties. IEEE Trans. Fuzzy Syst. 20(6), 1001–1011 (2012)

    Google Scholar 

  48. Mendel, J.M.: Uncertain rule-based fuzzy systems. Introduction and new directions, vol. 684. Springer, Berlin (2017)

    MATH  Google Scholar 

  49. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transactions on Fuzzy systems 8(5), 535–550 (2000)

    Google Scholar 

  50. Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 18(4), 841–844 (2010)

    Google Scholar 

  51. Mendel, J.M., Liu, F., Zhai, D.: \(\alpha\)-Plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)

    Google Scholar 

  52. Dubois, B.P.H.: Fuzzy sets and systems: theory and applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  53. Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)

    Google Scholar 

  54. Karnik, N.N., Mendel, J.M.: Introduction to type-2 fuzzy logic systems. In: 1998 IEEE International Conference on Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228). IEEE 2, 915–920 (1998)

  55. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Google Scholar 

  56. Craig, J.J.: Introduction to robotics: mechanics and control, 3/E. Pearson Education India, Oxford (2009)

    Google Scholar 

  57. Li, X.J., Yang, G.H.: Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2013)

    Google Scholar 

  58. Li, C., Gao, J., Yi, J., et al.: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. 26(1), 56–71 (2016)

    Google Scholar 

  59. Wang, L., Zheng, S., Wang, X., et al.: Fuzzy control of a double inverted pendulum based on information fusion. In: 2010 International Conference on Intelligent Control and Information Processing. IEEE, pp. 327–331 (2010)

  60. Han, H.G., Liu, H.X., Liu, Z., et al.: Fault detection of sludge bulking using a self-organizing type-2 fuzzy-neural-network. Control Eng. Practice 90, 27–37 (2019)

    Google Scholar 

  61. Han, H.G., Wu, X.L., Liu, Z., et al.: Design of self-organizing intelligent controller using fuzzy neural network. IEEE Trans. Fuzzy Syst. 26(5), 3097–3111 (2017)

    Google Scholar 

  62. Han, H., Wu, X., Zhang, L., et al.: Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization. IEEE Trans. Cybern. 49(1), 69–82 (2017)

    Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (2018YFB1307401) and the National Natural Science Foundation of China (61703291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyi Dian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Chen, Y., Dian, S. et al. General Type-2 Fuzzy Gain Scheduling PID Controller with Application to Power-Line Inspection Robots. Int. J. Fuzzy Syst. 22, 181–200 (2020). https://doi.org/10.1007/s40815-019-00780-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00780-1

Keywords

Navigation