Skip to main content
Log in

A Preferential Interval-Valued Fuzzy C-Means Algorithm for Remotely Sensed Imagery Classification

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Remotely sensed imagery classification have a large amount of uncertainty related to the intraclass heterogeneity and the interclass ambiguity of objects. Fuzzy set theory can address the uncertainty effectively, while interval-valued model can improve the separability of samples. Therefore, we propose a novel interval-valued fuzzy c-means algorithm, which integrates the interval-valued model and preferential adaptive method. It preferentially adjusts the interval width according to MSE (mean-square-error) and boundary factor for determining the optimal set of features for the data. In this paper, it is proved that the method can make the intraclass MSE and boundary factor always proportional to the separability of objects, so that it can dynamically adjust the interval-valued separability by controlling the interval width. Experimental data consisting of SPOT5 (10-m spatial resolution) satellite data for three case study areas in China are used to test this algorithm. Compared with other state-of-the-art fuzzy classification methods, our algorithm demonstrates the markedly improved overall accuracy and Kappa coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rocchini, D., Foody, G.M., Nagendra, H., Ricotta, C., Anand, M., He, K.S., Amici, V., Kleinschmit, B., Forster, M., Schmidtlein, S., Feilhauer, H., Ghisla, A., Metz, M., Neteler, M.: Uncertainty in ecosystem mapping by remote sensing. Comput. Geosci. 50(1), 128–135 (2013)

    Article  Google Scholar 

  2. He, H., Yu, X.C., Hu, D.: Fuzzy uncertainty modeling analysis and application, pp. 1–10. Science Press, Beijing (2016)

    Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Zhao, X.M., Li, Y., Zhao, Q.: A fuzzy clustering approach for complex color image segmentation based on gaussian model with interactions between color planes and mixture gaussian model. Int. J. Fuzzy Syst. 20(1), 309–317 (2017)

    Article  MathSciNet  Google Scholar 

  5. Guo, L., Chen, L., Wu, Y.W., Philip Chen, C.L.: Image guided fuzzy c-means for image segmentation. Int. J. Fuzzy Syst. 19(6), 1660–1669 (2017)

    Article  MathSciNet  Google Scholar 

  6. Thyagharajan, K.K., Vignesh, T.: Soft computing techniques for land use and land cover monitoring with multispectral remote sensing images: a review. Comput. Method Eng. 26(2), 275–301 (2019)

    Article  Google Scholar 

  7. Kumar, A.S., Kumar, A., Krishnan, R., Chakravarthi, B., Deekshatalu, B.L.: Soft computing in remote sensing applications. Proc. Natl. Acad. Sci. India A 87(4), 503–517 (2017)

    Google Scholar 

  8. Choubin, B., Solaimani, K., Roshan, M.H., Malekian, A.: Watershed classification by remote sensing indices: a fuzzy c-means clustering approach. J. Mt. Sci. 14(10), 2053–2063 (2017)

    Article  Google Scholar 

  9. Zhang, H., Wang, Q.M., Shi, W.Z., Hao, M.: A novel adaptive fuzzy local information c-means clustering algorithm for remotely sensed imagery classification. IEEE Trans. Geosci. Remote Sens. 55(9), 5057–5067 (2017)

    Article  Google Scholar 

  10. Zhang, H., Shi, W.Z., Hao, M., Li, Z.X., Wang, Y.J.: An adaptive spatially constrained fuzzy c-means algorithm for multispectral remote sensed imagery clustering. Int. J. Remote Sens. 39(8), 2207–2237 (2018)

    Article  Google Scholar 

  11. Wang, X., Huang, J., Chu, Y.L., Xu, L.: Change detection in bitemporal remote sensing images by using feature fusion and fuzzy c-means. KSII Trans. Internet Inf. Syst. 12(4), 1714–1729 (2018)

    Google Scholar 

  12. Carvalho, F., Tenorio, C.P.: Fuzzy k-means clustering algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy Sets Syst. 161(23), 2978–2999 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oner, S.C., Oztaysi, B.: An interval valued hesitant fuzzy clustering approach for location clustering and customer segmentation. Adv. Fuzzy Logic Technol. 3(643), 56–70 (2017)

    Google Scholar 

  14. Bao, C.Z., Peng, H.M., He, D., Wang, J.: Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique. Pattern Anal. Appl. 21(3), 803–812 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, T.H., Zhang, L.Y., Lu, W., Hou, H., Liu, X.D., Pedrycz, W., Zhong, C.Q.: Interval kernel fuzzy c-means clustering of incomplete data. Neurocomputing 237, 316–331 (2017)

    Article  Google Scholar 

  16. Guo, J.F., Huo, H.Y., Peng, G.X.: An interval number distance- and ranking-based method for remotely sensed image fuzzy clustering. Int. J. Remote Sens. 39(23), 8591–8614 (2018)

    Article  Google Scholar 

  17. He, H., Hu, D., Yu, X.C.: Land cover classification based on adaptive interval type-2 fuzzy clustering. Chin. J. Geophys. 59(6), 1983–1993 (2016)

    Google Scholar 

  18. He, H., Xing, H.H., Hu, D., Yu, X.C.: Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis. Sci. China-Earth Sci. 62(2), 438–450 (2019)

    Article  Google Scholar 

  19. Dzung, D.N., Long, T.N., Long, T.P., Pedrycz, W.: Towards hybrid clustering approach to data classification: multiple kernels based interval-valued fuzzy c-means algorithm. Fuzzy Sets Syst. 279, 17–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu, X.C., He, H., Hu, D., Zhou, W.: Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm. Sci. China-Earth Sci. 57(6), 1306–1313 (2014)

    Article  Google Scholar 

  21. He, H., Liang, T.H., Hu, D., Yu, X.C.: Remote sensing clustering analysis based on object-based interval modeling. Comput. Geosci. 94, 131–139 (2016)

    Article  Google Scholar 

  22. Jiang, T., Hu, D., Yu, X.C.: Enhanced IT2FCM algorithm using object-based triangular fuzzy set modeling for remote-sensing clustering. Comput. Geosci. 118, 14–26 (2018)

    Article  Google Scholar 

  23. Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and faulttolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frankl. Inst.-Eng. Appl. Math. 354(12), 4719–4738 (2017)

    Article  MATH  Google Scholar 

  24. Shang, H.J., Jiang, Z.T., Xu, R.B., Wang, D., Wu, P., Chen, Y.H.: The dynamic mechanism of a novel stochastic neural firing pattern observed in a real biological system. Cogn. Syst. Res. 53, 123–136 (2019)

    Article  Google Scholar 

  25. Chuang, C.C., Jeng, J.T., Chang, S.C.: Hausdorff distance measure based interval fuzzy possibilistic c-means clustering algorithm. Int. J. Fuzzy Syst. 15(4), 471–479 (2013)

    MathSciNet  Google Scholar 

  26. Carvalho, F.D.A.T.D., Simoes, E.C.: Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances. Neurocomputing 266, 659–673 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Natural Science Foundation of Shandong (ZR2019MF060, ZR2018LF005, ZR2017MF008, ZR201702220179, and ZR201709210160), the Natural Science Foundation of China (61801414, 61802330, and 61802331), the Yantai Science and Technology Plan (2018YT06000271), and a Project of Shandong Province Higher Educational Science and Technology Key Program (J18KZ016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindong Xu.

Appendices

Appendix 1: The Relationship Between Interval Adaptive Factor \({\mathbf{\alpha}}\) and the Separability of the Samples

Suppose the interval sample \({\tilde{\mathbf{A}}} = \left( {\tilde{A}_{1} , \tilde{A}_{2} , \ldots , \tilde{A}_{p} } \right)\) modeled by Eq. (1) method, and the current interval cluster center \({\tilde{\mathbf{V}}} = \left( {\tilde{V}_{1} , \tilde{V}_{2} , \ldots , \tilde{V}_{p} } \right),\) and the separability is expressed as Euclidean distance between \({\tilde{\mathbf{A}}}\) and \({\tilde{\mathbf{V}}}\) is

$$\begin{aligned} S\left( {{\tilde{\mathbf{A}}}, {\tilde{\mathbf{V}}}} \right) & = \sqrt {\mathop \sum \limits_{l = 1}^{p} \left( {\tilde{A}_{l} - \tilde{V}_{l} } \right)^{2} } \\ & = \sqrt {\mathop \sum \limits_{l = 1}^{p} \left[ {\left( {\tilde{A}_{l}^{ - } - \tilde{V}_{l}^{ - } } \right)^{2} + \left( {\tilde{A}_{l}^{ + } - \tilde{V}_{l}^{ + } } \right)^{2} } \right]} \\ & = \sqrt 2 *\sqrt {\mathop \sum \limits_{l = 1}^{p} \left[ {\left( {m_{{A_{l} }} - m_{{V_{l} }} } \right)^{2} + \left( {\alpha_{Al} *\sigma_{A} - d_{l} } \right)^{2} } \right]} \\ \end{aligned}$$
(12)

Since

$$\alpha_{Al} \in \left[ {0, 1} \right]\;{\text{and }}\left( {m_{{A_{l} }} - m_{{V_{l} }} } \right)^{2} \ge 0$$
(13)

Let \(f = \left( {\alpha_{Al} *\sigma_{A} - d_{l} } \right)^{2}\) represent \(S\left( {{\tilde{\mathbf{A}}},{\tilde{\mathbf{V}}}} \right)\) . Then differentiating \(f\) with respect to \(\alpha_{Al}\) leads to

$$\frac{\partial f}{{\partial \alpha_{Al} }} = 2\sigma_{A} \left( {\alpha_{Al} *\sigma_{A} - d_{l} } \right) = 0$$
(14)

We thus obtain

$$\sigma_{Al} = 0 \;{\text{or }}\alpha_{Al} = \frac{{d_{l} }}{{\sigma_{A} }}, \;\sigma_{A} \ne 0$$
(15)

Since \(f \ge 0\), let \(\sqrt f\) be \(f\).

As shown in Fig. 5, we can get the detailed relationship rule between \(\sqrt f\) and \(\alpha_{Al}\) in interval [0, 1]:

Fig. 5
figure 5

The detailed relationship rule between \(\sqrt f\) and \(\alpha_{Al}\) in interval [0, 1]

Case 1

Direct proportion if \(\alpha_{Al} \in \left[ {0, 1} \right]\) and \(\frac{{d_{l} }}{{\sigma_{A} }} = 0\).

Case 2

Direct proportion if \(\alpha_{Al} \in \left[ {0, 1} \right]\) and \(\frac{{d_{l} }}{{\sigma_{A} }} > 1.\)

Case 3

Inverse proportion if \(\alpha_{Al} \in \left[ {0, 1} \right]\) and \(\frac{{d_{l} }}{{\sigma_{A} }} = 1.\)

Case 4

Inverse proportion if \(\alpha_{Al} \in \left[ {0, \frac{{d_{l} }}{{\sigma_{A} }}} \right)\) and \(\frac{{d_{l} }}{{\sigma_{A} }} \ge 0.5;\)

direct proportion if \(\alpha_{Al} \in \left[ {\frac{{d_{l} }}{{\sigma_{A} }}, 1} \right]\) and \(\frac{{d_{l} }}{{\sigma_{A} }} \ge 0.5.\)

Case 5

Inverse proportion if \(\alpha_{Al} \in \left[ {0, \frac{{d_{l} }}{{\sigma_{A} }}} \right)\) and \(\frac{{d_{l} }}{{\sigma_{A} }} < 0.5;\)

direct proportion if \(\alpha_{Al} \in \left[ {\frac{{d_{l} }}{{\sigma_{A} }}, 1} \right]\) and \(\frac{{d_{l} }}{{\sigma_{A} }} < 0.5.\)

Case 6

None if \(\alpha_{Al} \in \left[ {0, 1} \right]\) and \(\sigma_{A} = 0.\)

In summary, the relationship between the interval width adjustment factor \({\mathbf{\alpha}}\) and the degree of separation is as follows:

$$\begin{aligned} & {\mathbf{\theta}}\left( {\alpha_{Al} , S\left( {{\tilde{\mathbf{A}}}, {\tilde{\mathbf{C}}}_{k} } \right)} \right) \\ & = \left\{ \begin{array}{ll} {\text{inverse}} \;{\text{proportion}}, & \quad \alpha_{Al} \in \left[ 0,\text{min} \left( \frac{{d_{l} }}{{\sigma_{A} }}, 1 \right) \right) \ {\text{and}} \ \frac{{d_{l} }}{{\sigma_{A} }} \in \left( {0, + \infty } \right) \\ {\text{direct}} \ {\text{proportion}}, & \quad \alpha_{Al} \in \left[ {\frac{{d_{l} }}{{\sigma_{A} }}, 1} \right] \ {\text{and}} \ \frac{{d_{l} }}{{\sigma_{A} }} \in \left[ {0, 1} \right)\\ {\text{none}}, &\quad \sigma_{A} = 0 \hfill \end{array} \right. .\end{aligned}$$
(16)

Appendix 2: Preferential Interval Width Adaptive Factor \({\mathbf{\alpha}}\)

The purpose of \({\mathbf{\alpha}}\) is to increase the separability of the samples when the intraclass MSE \({\mathbf{e}}\) and boundary factor \({\mathbf{\gamma}}\) increase.

Case 1

Under the condition of Fig. 4a, the separability and \({\mathbf{\alpha}} \in \left[ {0, 1} \right]\) are direct proportion relations, so \({\mathbf{\alpha}}\) needs to be proportional to \({\mathbf{e}}\) and \({\mathbf{\gamma}}\), and is calculated as

$${\mathbf{\alpha}} = 1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}}} \right)^{2} } \right)$$
(17)

Case 2

Under the condition of Fig. 4b, the separability and \({\mathbf{\alpha}} \in \left[ {0, 1} \right]\) are inverse proportion relations, so \({\mathbf{\alpha}}\) needs to be inversely proportional to \({\mathbf{e}}\) and \({\mathbf{\gamma}},\) and is calculated as

$${\mathbf{\alpha}} = 1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}} - {\text{H}}} \right)^{2} } \right),$$
(18)

where \({\text{H}}\) is the maximum value of the normalization of \({\mathbf{e}}*{\mathbf{\gamma}}.\)

Case 3

Under the condition of Fig. 4c, the separability and \({\mathbf{\alpha}} \in \left[ {0, 1} \right]\) are inverse proportion relations, so \({\mathbf{\alpha}}\) needs to be inversely proportional to \({\mathbf{e}}\) and \({\mathbf{\gamma}}\), and the calculation method is the same as Case 2.

Case 4

Under the condition of Fig. 4d, the separability is proportional to \({\mathbf{\alpha}} \in \left[ {0, \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}} \right)\) and inversely proportional to \({\mathbf{\alpha}} \in \left[ {\frac{{\mathbf{d}}}{{\mathbf{\sigma}}},1} \right]\). In this study, we choose to adjust in a lager interval, which is \({\mathbf{\alpha}} \in \left[ {0, \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}} \right),\) so \({\mathbf{\alpha}}\) needs to be inversely proportional to \({\mathbf{e}}\) and \({\mathbf{\gamma}}\), and is calculated as

$${\mathbf{\alpha}} = \frac{{\mathbf{d}}}{{\mathbf{\sigma}}} *\left( {1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}} - {\text{H}}} \right)^{2} } \right)} \right)$$
(19)

Case 5

Under the condition of Fig. 4e, the separability is proportional to \({\mathbf{\alpha}} \in \left[ {0, \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}} \right)\) and inversely proportional to \({\mathbf{\alpha}} \in \left[ {\frac{{\mathbf{d}}}{{\mathbf{\sigma}}},1} \right]\). Similarly, we choose to adjust in a lager interval, which is \({\mathbf{\alpha}} \in \left[ {\frac{{\mathbf{d}}}{{\mathbf{\sigma}}},1} \right],\) so \({\mathbf{\alpha}}\) needs to be proportional to \({\mathbf{e}}\) and \({\mathbf{\gamma}},\) and is calculated as

$${\mathbf{\alpha}} = \left( {1 - \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}} \right)*\left( {1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}}} \right)^{2} } \right)} \right) + \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}$$
(20)

Case 6

Under the condition of Fig. 4f, the separability is not related to \({\mathbf{\alpha}}.\)

In summary, preferential interval width adaptive factor \({\mathbf{\alpha}}\) is calculated as

$$\begin{aligned} & {\mathbf{\alpha}} \\ & = \left\{ {\begin{array}{ll} {{\mathbf{}}\varvec{ } \frac{{\mathbf{d}}}{{\mathbf{\sigma}}} *\left( {1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}} - {\text{H}}} \right)^{2} } \right)} \right),} &{{\mathbf{\alpha}} \in \left[ {0, { \text{min} }\left( {\frac{{\mathbf{d}}}{{\mathbf{\sigma}}}, 1} \right)} \right)\varvec{ }and\varvec{ }\frac{{\mathbf{d}}}{{\mathbf{\sigma}}} \in \left( {0, + \infty } \right)} \\ \begin{array}{ll} {\mathbf{}} \left( {1 - \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}} \right)*\left( {1 - w*\exp \left( { - \lambda *\left( {{\mathbf{e}}*{\mathbf{\gamma}}} \right)^{2} } \right)} \right) + \frac{{\mathbf{d}}}{{\mathbf{\sigma}}}, \hfill \\ 0, \hfill \\ \end{array} & \begin{array}{ll} {\mathbf{\alpha}} \in \left[ {\frac{{\mathbf{d}}}{{\mathbf{\sigma}}}, 1} \right]\varvec{ }and\varvec{ }\frac{{\mathbf{d}}}{{\mathbf{\sigma}}} \in \left[ {0, 1} \right) \hfill \\ \varvec{ }{\mathbf{\sigma}} = 0 \hfill \\ \end{array} \\ \end{array} } \right.. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Ni, M., Ou, S. et al. A Preferential Interval-Valued Fuzzy C-Means Algorithm for Remotely Sensed Imagery Classification. Int. J. Fuzzy Syst. 21, 2212–2222 (2019). https://doi.org/10.1007/s40815-019-00706-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00706-x

Keywords

Navigation