Skip to main content
Log in

An Extended PROMETHEE-II-Based Risk Prioritization Method for Equipment Failures in the Geothermal Power Plant

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The equipment failure is an important factor that may cause accidents in the geothermal power plant. Failure mode and effect analysis (FMEA) has been widely adopted to prevent potential failures in various process enterprises. However, current FMEA models are inefficient to determine risk priority by considering the risk preference and reliability of expert within the context of interaction among risk factors. To overcome this shortcoming, this paper develops a hybrid risk prioritization method by integrating PROMETHEE-II method, Bonferroni mean operator and linguistic Z-number. Firstly, the linguistic Z-number is utilized to depict the reliability and uncertainty of experts. Then, the linguistic Z-number ordered weighted averaging operator is developed to aggregate the risk evaluation information from experts, which can reflect the actual performance of experts. In addition, the extended PROMETHEE-II method with distance-based weighting method and Bonferroni mean operator is proposed to calculate the risk priority, in which the interactions among risk factors and risk preference of expert are considered. Finally, the risk analysis of equipment failures in the geothermal power plant is selected to illustrate the proposed method. The comparison and sensitivity analyses are conducted to further validate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu, Y., Xu, C., Zhang, T.: Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: a case in China. Energy 147, 1227–1239 (2018)

    Google Scholar 

  2. Feili, H.R., Akar, N., Lotfizadeh, H., Bairampour, M., Nasiri, S.: Risk analysis of geothermal power plants using failure modes and effects analysis (FMEA) technique. Energy Convers. Manag. 72, 69–76 (2013)

    Google Scholar 

  3. Mohsen, O., Fereshteh, N.: An extended VIKOR method based on entropy measure for the failure modes risk assessment—a case study of the geothermal power plant (GPP). Saf. Sci. 92, 160–172 (2017)

    Google Scholar 

  4. Wang, Y., Yang, X., Yan, H.: Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2892696

    Article  Google Scholar 

  5. Wang, Y., Shi, P., Yan, H.: Reliable control of fuzzy singularly perturbed systems and its application to electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 65(10), 3519–3528 (2018)

    MathSciNet  Google Scholar 

  6. Ramírez-Camacho, J.G., Carbone, F., Pastor, E., Bubbico, R., Casal, J.: Assessing the consequences of pipeline accidents to support land-use planning. Saf. Sci. 97, 34–42 (2017)

    Google Scholar 

  7. Wang, W., Liu, X., Qin, Y., Fu, Y.: A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Saf. Sci. 110, 152–163 (2018)

    Google Scholar 

  8. Zhao, H., You, J.-X., Liu, H.-C.: Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft. Comput. 21(18), 5355–5367 (2016)

    Google Scholar 

  9. Tian, Z-p, Wang, J-q, Zhang, H-y: An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods. Appl. Soft Comput. 72, 636–646 (2018)

    Google Scholar 

  10. Wang, W., Liu, X., Qin, J., Liu, S.: An extended generalized TODIM for risk evaluation and prioritization of failure modes considering risk indicators interaction. IISE Trans. (2018). https://doi.org/10.1080/24725854.2018.1539889

    Article  Google Scholar 

  11. Nie, R-x, Tian, Z-p, Wang, X-k, Wang, J-q, Wang, T-l: Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment. Knowl.-Based Syst. 162, 185–201 (2018)

    Google Scholar 

  12. Wang, Z., Gao, J.-M., Wang, R.-X., Chen, K., Gao, Z.-Y., Jiang, Y.: Failure mode and effects analysis using Dempster-Shafer theory and TOPSIS method: application to the gas insulated metal enclosed transmission line (GIL). Appl. Soft Comput. 70, 633–647 (2018)

    Google Scholar 

  13. Liu, H.-C., Chen, Y.-Z., You, J.-X., Li, H.: Risk evaluation in failure mode and effects analysis using fuzzy digraph and matrix approach. J. Intell. Manuf. 27(4), 805–816 (2016)

    Google Scholar 

  14. Sayyadi Tooranloo, H., Ayatollah, A.S.: A model for failure mode and effects analysis based on intuitionistic fuzzy approach. Appl. Soft Comput. 49, 238–247 (2016)

    Google Scholar 

  15. Yazdi, M., Daneshvar, S., Setareh, H.: An extension to Fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017)

    Google Scholar 

  16. Bozdag, E., Asan, U., Soyer, A., Serdarasan, S.: Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 42(8), 4000–4015 (2015)

    Google Scholar 

  17. Zhou, Q., Thai, V.V.: Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Saf. Sci. 83, 74–79 (2016)

    Google Scholar 

  18. Wang, Z.-L., You, J., Liu, H.-C., Wu, S.-M.: Failure mode and effect analysis using soft set theory and COPRAS method. Int. J. Comput. Intell. Syst. 10(1), 1002–1015 (2017)

    Google Scholar 

  19. Chin, K.-S., Wang, Y.-M., Ka Kwai Poon, G., Yang, J.-B.: Failure mode and effects analysis using a group-based evidential reasoning approach. Comput. Oper. Res. 36(6), 1768–1779 (2009)

    MATH  Google Scholar 

  20. Jiang, W., Xie, C., Zhuang, M., Tang, Y.: Failure mode and effects analysis based on a novel fuzzy evidential method. Appl. Soft Comput. 57, 672–683 (2017)

    Google Scholar 

  21. Liu, H.-C., You, J.-X., You, X.-Y., Shan, M.-M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 28, 579–588 (2015)

    Google Scholar 

  22. Chang, K.-H., Cheng, C.-H.: A risk assessment methodology using intuitionistic fuzzy set in FMEA. Int. J. Syst. Sci. 41(12), 1457–1471 (2010)

    MathSciNet  Google Scholar 

  23. Wang, L.-E., Liu, H.-C., Quan, M.-Y.: Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments. Comput. Ind. Eng. 102, 175–185 (2016)

    Google Scholar 

  24. Liu, H.-C., Liu, L., Liu, N., Mao, L.-X.: Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst. Appl. 39(17), 12926–12934 (2012)

    Google Scholar 

  25. Liu, H.-C., You, J.-X., Fan, X.-J., Lin, Q.-L.: Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 41(10), 4670–4679 (2014)

    Google Scholar 

  26. Liu, H., Hu, Y., Wang, J., Sun, M.: Failure mode and effects analysis using two-dimensional uncertain linguistic variables and alternative queuing method. IEEE Trans. Reliab. (2018). https://doi.org/10.1109/TR.2018.2866029

    Article  Google Scholar 

  27. Liu, H., Wang, L., Li, Z., Hu, Y.: Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE Trans. Fuzzy Syst. 27(1), 84–95 (2018)

    Google Scholar 

  28. Liu, H., Li, Z., Song, W., Su, Q.: Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Trans. Reliab. 66(4), 1058–1072 (2017)

    Google Scholar 

  29. Huang, J., You, X.-Y., Liu, H.-C., Si, S.-L.: New approach for quality function deployment based on proportional hesitant fuzzy linguistic term sets and prospect theory. Int. J. Prod. Res. (2018). https://doi.org/10.1080/00207543.2018.1470343

    Article  Google Scholar 

  30. Liu, X., Tao, Z., Chen, H., Zhou, L.: A new interval-valued 2-tuple linguistic Bonferroni mean operator and its application to multiattribute group decision making. Int. J. Fuzzy Syst. 19(1), 86–108 (2017)

    MathSciNet  Google Scholar 

  31. Huang, J., Li, Z., Liu, H.-C.: New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab. Eng. Syst. Saf. 167, 302–309 (2017)

    Google Scholar 

  32. Kerk, Y.W., Tay, K.M., Lim, C.P.: An analytical interval fuzzy inference system for risk evaluation and prioritization in failure mode and effect analysis. IEEE Syst. J. 11(3), 1589–1600 (2017)

    Google Scholar 

  33. Liu, H., You, J., Li, P., Su, Q.: Failure mode and effect analysis under uncertainty: an integrated multiple criteria decision making approach. IEEE Trans. Reliab. 65(3), 1380–1392 (2016)

    Google Scholar 

  34. Kuang, H., Kilgour, D.M., Hipel, K.W.: Grey-based PROMETHEE II with application to evaluation of source water protection strategies. Inf. Sci. 294, 376–389 (2015)

    MathSciNet  Google Scholar 

  35. Strantzali, E., Aravossis, K., Livanos, G.A.: Evaluation of future sustainable electricity generation alternatives: the case of a Greek island. Renew. Sustain. Energy Rev. 76, 775–787 (2017)

    Google Scholar 

  36. Peng, H-g, Shen, K-w, He, S-s, Zhang, H-y, Wang, J-q: Investment risk evaluation for new energy resources: an integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 183, 332–348 (2019)

    Google Scholar 

  37. Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)

    MATH  Google Scholar 

  38. Wang, J-q, Cao, Y-x, Zhang, H-y: Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic Z-numbers. Cognit. Comput. 9(6), 827–842 (2017)

    Google Scholar 

  39. Bonferroni, C.: Sulle medie multiple di potenze. Boll. Mat. Ital. 5(3–4), 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  40. Zhu, B., Xu, Z., Xia, M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205, 72–85 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Brans, J.P., Vincke, P., Mareschal, B.: How to select and how to rank projects: the Promethee method. Eur. J. Oper. Res. 24(2), 228–238 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Govindan, K., Kadziński, M., Sivakumar, R.: Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 71, 129–145 (2017)

    Google Scholar 

  43. de Almeida Filho, A.T., Clemente, T.R.N., Morais, D.C., de Almeida, A.T.: Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. Eur. J. Oper. Res. 264(2), 453–461 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Krishankumar, R., Ravichandran, K.S., Saeid, A.B.: A new extension to PROMETHEE under intuitionistic fuzzy environment for solving supplier selection problem with linguistic preferences. Appl. Soft Comput. 60, 564–576 (2017)

    Google Scholar 

  45. Qin, Q., Liang, F., Li, L., Chen, Y.-W., Yu, G.-F.: A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Appl. Soft Comput. 55, 93–107 (2017)

    Google Scholar 

  46. Reimann, O., Schumacher, C., Vetschera, R.: How well does the OWA operator represent real preferences? Eur. J. Oper. Res. 258(3), 993–1003 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Andreopoulou, Z., Koliouska, C., Galariotis, E., Zopounidis, C.: Renewable energy sources: using PROMETHEE II for ranking websites to support market opportunities. Technol. Forecast. Soc. Change 131, 31–37 (2018)

    Google Scholar 

  48. Tian, Z-p, Wang, J., Wang, J-q, Zhang, H-y: An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput. Appl. 28(1), 585–597 (2017)

    Google Scholar 

  49. Corrente, S., Figueira, J.R., Greco, S.: The SMAA-PROMETHEE method. Eur. J. Oper. Res. 239(2), 514–522 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Peng, H-g, Wang, J-q: Hesitant uncertain linguistic Z-numbers and their application in multi-criteria group decision-making problems. Int. J. Fuzzy Syst. 19(5), 1300–1316 (2017)

    Google Scholar 

  51. Wang, W., Liu, X., Qin, J.: Risk priorization for failure modes with extended MULTIMOORA method under interval type-2 fuzzy environment. J. Intell. Fuzzy Syst. 36(2), 1417–1429 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the MOE Ministry of Education in China (MOE), Project of Humanities and Social Sciences (19YJC630160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-hua Gan.

Appendices

Appendix A

Proof

The mathematical induction on \(k\) is adopted to prove Theorem 1 expressed by Eq. (16); the proving process is presented as follows:

  1. (1)

    When \(k = 1\), \(\omega^{(1)} = 1\), it is right obviously.

  2. (2)

    Assume that Eq. (16) holds for \(k = q\), i.e.,

    $${\text{LZ-OWA}}_{\omega } \left( {a_{1} ,a_{2} , \ldots ,a_{q} } \right) = \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{i^{\prime}}} f^{ * } \left( {A_{{\phi \sigma (i^{\prime})}} } \right)} \right),B_{{\varphi \sigma (i^{\prime})}} } \right)}$$

    Then, when \(k = q + 1\), by the algorithms of linguistic Z-numbers in Definition 2, we have

    $$\begin{aligned} & {\text{LZ-OWA}}_{\omega } \left( {a_{1} ,a_{2} , \ldots ,a_{q + 1} } \right) \\ & \quad = \omega^{(1)} a_{\sigma (1)} \oplus \omega^{(2)} a_{\sigma (2)} \oplus \cdots \oplus \omega^{(q + 1)} a_{\sigma (q + 1)} \\ & \quad = \left( {f^{ * - 1} \left( {\omega^{(1)} f^{ * } \left( {A_{{\phi \left( {\sigma (1)} \right)}} } \right)} \right),B_{{\varphi \left( {\sigma (1)} \right)}} } \right) \oplus \left( {f^{ * - 1} \left( {\omega^{(2)} f^{ * } \left( {A_{{\phi \left( {\sigma (2)} \right)}} } \right)} \right),B_{{\varphi \left( {\sigma (2)} \right)}} } \right) \\ & \quad \quad \oplus \cdots \oplus \left( {f^{ * - 1} \left( {\omega^{(q + 1)} f^{ * } \left( {A_{{\phi \left( {\sigma (q + 1)} \right)}} } \right)} \right),B_{{\varphi \left( {\sigma (q + 1)} \right)}} } \right) \\ & \quad = \sum\limits_{{i^{\prime} = 1}}^{q + 1} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{{\phi \left( {\sigma (i^{\prime})} \right)}} } \right)} \right),B_{{\varphi \left( {\sigma (i^{\prime})} \right)}} } \right)} \\ \end{aligned}$$

    So, when \(k = q + 1\), Eq. (16) is also right.

Consequently, according to mathematical induction presented in (1) and (2), Eq. (14) holds for all \(k\).\(\square\)

Appendix B

Proof

  1. (1)

    As \(a_{{i^{\prime}}} = a_{0} = \left( {A_{\phi (0)} ,B_{\varphi (0)} } \right)\left( {i^{\prime} = 1, \ldots k, \ldots ,q} \right)\), and \(\sum\limits_{{i^{\prime} = 1}}^{q} {\omega^{{(i^{\prime})}} } = 1\), by the algorithms of linguistic Z-numbers in Definition 2, we have

    $$\begin{aligned} & {\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) \\ & \quad = {\text{LZ-OWA}}_{\omega } \left( {a_{0} , \ldots, a_{0} , \ldots ,a_{q} } \right) \\ & \quad = \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{\phi (0)} } \right)} \right),B_{\varphi (0)} } \right)} \\ & \quad = \left( {f^{ * - 1} \left( {\sum\nolimits_{{i^{\prime} = 1}}^{q} {\omega^{{(i^{\prime})}} } \times f^{ * } \left( {A_{\phi (0)} } \right)} \right),g^{ * - 1} \left( {\frac{{\left( {\sum {f^{ * } \left( {A_{\phi (0)} } \right)} } \right) \times g^{ * } \left( {B_{\varphi (0)} } \right)}}{{\sum {f^{ * } \left( {A_{\phi (0)} } \right)} }}} \right)} \right) \\ & \quad = \left( {f^{ * - 1} \left( {\sum\nolimits_{{i^{\prime} = 1}}^{q} {\omega^{{(i^{\prime})}} } \times f^{ * } \left( {A_{\phi (0)} } \right)} \right),g^{ * - 1} \left( {g^{ * } \left( {B_{\varphi (0)} } \right)} \right)} \right) \\ \end{aligned}$$

    Since \(\sum\limits_{{i^{\prime} = 1}}^{q} {\omega^{{(i^{\prime})}} } = 1\), then we can obtain

    $$\begin{aligned} & \left( {f^{ * - 1} \left( {\sum\nolimits_{{i^{\prime} = 1}}^{q} {\omega^{{(i^{\prime})}} } \times f^{ * } \left( {A_{\phi (0)} } \right)} \right),g^{ * - 1} \left( {g^{ * } \left( {B_{\varphi (0)} } \right)} \right)} \right) \\ & \quad = \left( {f^{ * - 1} \left( {f^{ * } \left( {A_{\phi (0)} } \right)} \right),g^{ * - 1} \left( {g^{ * } \left( {B_{\varphi (0)} } \right)} \right)} \right) \\ & \quad = \left( {A_{\phi (0)} ,B_{\varphi (0)} } \right) = a_{0} \\ \end{aligned}$$

    \(\square\)

  2. (2)

    Assume that \(a_{\hbox{min} } = c = \left( {A_{\phi (c)} ,B_{\varphi (c)} } \right)\), \(a_{\hbox{max} } = d = \left( {A_{\phi (d)} ,B_{\varphi (d)} } \right)\), then

    $$\begin{aligned} & {\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) \\ & \quad = \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{{\phi (i^{\prime})}} } \right)} \right),B_{{\varphi (i^{\prime})}} } \right)} \\ & \quad \ge \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{\phi (c)} } \right)} \right),B_{\varphi (c)} } \right)} = \left( {A_{\phi (c)} ,B_{\varphi (c)} } \right) \\ \end{aligned}$$

    and

    $$\begin{aligned} & {\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) \\ & \quad = \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{{\phi (i^{\prime})}} } \right)} \right),B_{{\varphi (i^{\prime})}} } \right)} \\ & \quad \le \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{\phi (d)} } \right)} \right),B_{\varphi (d)} } \right)} = \left( {A_{\phi (d)} ,B_{\varphi (d)} } \right) \\ \end{aligned}$$

    Therefore, we can get

    $$a_{\hbox{min} } \le {\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) \le a_{\hbox{max} }$$

    \(\square\)

  3. (3)

    Let \({\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) = \sum\limits_{{i^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(i^{\prime})}} f^{ * } \left( {A_{{\phi (\sigma (i^{\prime}))}} } \right)} \right),B_{{\varphi (\sigma (i^{\prime}))}} } \right)}\), \({\text{LZ-OWA}}_{\omega } \left( {b_{1} , \ldots b_{k} , \ldots ,b_{q} } \right) = \sum\limits_{{j^{\prime} = 1}}^{q} {\left( {f^{ * - 1} \left( {\omega^{{(j^{\prime})}} f^{ * } \left( {A_{{\phi (\sigma (j^{\prime}))}} } \right)} \right),B_{{\varphi (\sigma (j^{\prime}))}} } \right)} .\) Since \(A_{{\phi (i^{\prime})}} \le A_{{\phi (j^{\prime})}}\), \(B_{{\varphi (i^{\prime})}} \le B_{{\varphi (j^{\prime})}}\), it follows that \(a_{{\sigma (i^{\prime})}} \le b_{{\sigma (j^{\prime})}} \left( {i^{\prime},j^{\prime} = 1,2, \ldots ,q} \right)\), then

    $${\text{LZ-OWA}}_{\omega } \left( {a_{1} , \ldots, a_{k} , \ldots ,a_{q} } \right) \le {\text{LZ-OWA}}_{\omega } \left( {b_{1} , \ldots b_{k} , \ldots ,b_{q} } \right) .$$

    \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hj., Zhou, Y. & Gan, Qh. An Extended PROMETHEE-II-Based Risk Prioritization Method for Equipment Failures in the Geothermal Power Plant. Int. J. Fuzzy Syst. 21, 2490–2509 (2019). https://doi.org/10.1007/s40815-019-00679-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00679-x

Keywords

Navigation