Skip to main content
Log in

A Linguistic Intuitionistic Cloud Decision Support Model with Sentiment Analysis for Product Selection in E-commerce

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Online product reviews significantly impact the online purchase decisions of consumers. However, extant decision support models have neglected the randomness and fuzziness of online reviews and the interrelationships among product features. This study presents an integrated decision support model that can help customers discover desirable products online. This proposed model encompasses three modules: information acquisition, information transformation, and integration model. We use the information acquisition module to gather linguistic intuitionistic fuzzy information in each review through sentiment analysis. We also apply the information transformation module to convert the linguistic intuitionistic fuzzy information into linguistic intuitionistic normal clouds (LINCs). The integration module is employed to obtain the overall LINCs for each product. A ranked list of alternative products is determined. A case study on Taobao.com is then provided to illustrate the effectiveness and feasibility of the proposal, along with sensitivity and comparison analyses, to verify its stability and superiority. Finally, conclusions and future research directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, K., Luo, X., Zhang, L.: Evaluation of China’s B2C e-commerce website: an analysis of factors that influence online buying decision. Int. J. Multimed. Ubiquitous Eng. 11(3), 143–156 (2016)

    Article  Google Scholar 

  2. Chen, X., Xue, Y., Zhao, H.Y., Lu, X., Hu, X.H., Ma, Z.H.: A novel feature extraction methodology for sentiment analysis of product reviews. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-00018-03477-00522

    Article  Google Scholar 

  3. Büschken, J., Allenby, G.M.: Sentence-based text analysis for customer reviews. Market. Sci. 35(6), 953–975 (2016)

    Article  Google Scholar 

  4. Zhou, F., Jiao, J.R., Yang, X.J., Lei, B.: Augmenting feature model through customer preference mining by hybrid sentiment analysis. Expert Syst. Appl. 89, 306–317 (2017)

    Article  Google Scholar 

  5. Gao, B., Hu, N., Bose, I.: Follow the herd or be myself? An analysis of consistency in behavior of reviewers and helpfulness of their reviews. Decis. Support Syst. 95, 1–11 (2017)

    Article  Google Scholar 

  6. Gavilan, D., Avello, M., Martinez-Navarro, G.: The influence of online ratings and reviews on hotel booking consideration. Tour. Manag. 66, 53–61 (2018)

    Article  Google Scholar 

  7. Chen, A., Lu, Y., Wang, B.: Customers’ purchase decision-making process in social commerce: a social learning perspective. Int. J. Inf. Manag. 37(6), 627–638 (2017)

    Article  Google Scholar 

  8. Maslowska, E., Malthouse, E.C., Viswanathan, V.: Do customer reviews drive purchase decisions? The moderating roles of review exposure and price. Decis. Support Syst. 98, 1–9 (2017)

    Article  Google Scholar 

  9. Wang, W., Tan, G., Wang, H.: Cross-domain comparison of algorithm performance in extracting aspect-based opinions from Chinese online reviews. Int. J. Mach. Learn. Cybernet. 8(3), 1053–1070 (2016)

    Article  Google Scholar 

  10. Zhang, Z.Q., Ye, Q., Li, Y.J.: Literature review on sentiment analysis of online product reviews. J. Manag. Sci. China 13(6), 84–96 (2010)

    Google Scholar 

  11. Zhang, H.Y., Ji, P., Wang, J.Q., Chen, X.H.: A novel decision support model for satisfactory restaurants utilizing social information: a case study of TripAdvisor.com. Tour. Manag. 59, 281–297 (2017)

    Article  Google Scholar 

  12. Liu, Y., Bi, J.W., Fan, Z.P.: Ranking products through online reviews: a method based on sentiment analysis technique and intuitionistic fuzzy set theory. Inf. Fusion. 36, 149–161 (2017)

    Article  Google Scholar 

  13. Levy, S.E., Duan, W.J., Boo, S.Y.: An analysis of one-star online reviews and responses in the Washington, D.C., lodging market. Cornell Hosp. Q. 54(1), 49–63 (2013)

    Article  Google Scholar 

  14. Xu, H., Fan, Z.P., Liu, Y., Peng, W.L., Yu, Y.Y.: A method for evaluating service quality with hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. 20(5), 1523–1538 (2018)

    Article  Google Scholar 

  15. Kahraman, C., Onar, S.Ç., Öztayşi, B.: B2C marketplace prioritization using hesitant fuzzy linguistic AHP. Int. J. Fuzzy Syst. 20(7), 2202–2215 (2017)

    Article  Google Scholar 

  16. Zhang, H.M.: Linguistic intuitionistic fuzzy sets and application in MAGDM. J. Appl. Math. 2014, 1–11 (2014)

    Google Scholar 

  17. Peng, H.G., Zhang, H.Y., Wang, J.Q.: Cloud decision support model for selecting hotels on TripAdvisor.com with probabilistic linguistic information. Int. J. Hosp. Manag. 68, 124–138 (2018)

    Article  Google Scholar 

  18. Bonferroni, C.: Sulle medie multiple di potenze. Bolletino dell`Unione Matematica Italiana 5, 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  19. Keshavarz, H., Abadeh, M.S.: ALGA: adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs. Knowl. Based Syst. 122, 1–16 (2017)

    Article  Google Scholar 

  20. Singh, J.P., Irani, S., Rana, N.P., Dwivedi, Y.K., Saumya, S., Kumar Roy, P.: Predicting the “helpfulness” of online consumer reviews. J. Bus. Res. 70, 346–355 (2017)

    Article  Google Scholar 

  21. Lau, R.Y.K., Zhang, W., Xu, W.: Parallel aspect-oriented sentiment analysis for sales forecasting with big data. Prod. Oper. Manag. 27(10), 1775–1794 (2018)

    Article  Google Scholar 

  22. Fan, Z.P., Che, Y.J., Chen, Z.Y.: Product sales forecasting using online reviews and historical sales data: a method combining the Bass model and sentiment analysis. J. Bus. Res. 74, 90–100 (2017)

    Article  Google Scholar 

  23. Khan, F.H., Qamar, U., Bashir, S.: SWIMS: semi-supervised subjective feature weighting and intelligent model selection for sentiment analysis. Knowl. Based Syst. 100, 97–111 (2016)

    Article  Google Scholar 

  24. Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn. Comput. 7(4), 487–499 (2015)

    Article  Google Scholar 

  25. Xia, Y., Cambria, E., Hussain, A., Zhao, H.: Word polarity disambiguation using bayesian model and opinion-level features. Cogn. Comput. 7(3), 369–380 (2014)

    Article  Google Scholar 

  26. Guo, Y., Barnes, S.J., Jia, Q.: Mining meaning from online ratings and reviews: tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 59, 467–483 (2017)

    Article  Google Scholar 

  27. Loughran, T., Mcdonald, B.: When is a liability not a liability? Textual analysis, dictionaries, and 10-ks. J. Finance 66(1), 35–65 (2011)

    Article  Google Scholar 

  28. Thompson, J.J., Leung, B.H.M., Blair, M.R., Taboada, M.: Sentiment analysis of player chat messaging in the video game StarCraft 2: extending a lexicon-based model. Knowl. Based Syst. 137, 149–162 (2017)

    Article  Google Scholar 

  29. Liu, X., Singh, P.V., Srinivasan, K.: A structured analysis of unstructured big data by leveraging cloud computing. Market. Sci. 35(3), 363–388 (2016)

    Article  Google Scholar 

  30. Chan, I.C.C., Lam, L.W., Chow, C.W.C., Fong, L.H.N., Law, R.: The effect of online reviews on hotel booking intention: the role of reader-reviewer similarity. Int. J. Hosp. Manag. 66, 54–65 (2017)

    Article  Google Scholar 

  31. Sparks, B.A., So, K.K.F., Bradley, G.L.: Responding to negative online reviews: the effects of hotel responses on customer inferences of trust and concern. Tour. Manag. 53, 74–85 (2016)

    Article  Google Scholar 

  32. Yang, C., Yu, X., Liu, Y., Nie, Y., Wang, Y.: Collaborative filtering with weighted opinion aspects. Neurocomputing 210(C), 185–196 (2016)

    Article  Google Scholar 

  33. Scholz, M., Pfeiffer, J., Rothlauf, F.: Using PageRank for non-personalized default rankings in dynamic markets. Eur. J. Oper. Res. 260(1), 388–401 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fan, Z.P., Xi, Y., Liu, Y.: Supporting consumer’s purchase decision: a method for ranking products based on online multi-attribute product ratings. Soft. Comput. 22(16), 5247–5261 (2018)

    Article  MATH  Google Scholar 

  35. Saranya, T.: Mining features and ranking products from online customer reviews. Int. J. Eng. Res. Technol. 2(10), 643–648 (2013)

    Google Scholar 

  36. Yang, X., Yang, G., Wu, J.: Integrating rich and heterogeneous information to design a ranking system for multiple products. Decis. Support Syst. 84, 117–133 (2016)

    Article  Google Scholar 

  37. Najmi, E., Hashmi, K., Malik, Z., Rezgui, A., Khan, H.U.: CAPRA: a comprehensive approach to product ranking using customer reviews. Computing 97(8), 843–867 (2015)

    Article  MathSciNet  Google Scholar 

  38. Ji, P., Zhang, H., Wang, J.: A fuzzy decision support model with sentiment analysis for items comparison in e-commerce: the case study of PConline. IEEE Trans. Syst. Man Cybernet. Syst. (2018). https://doi.org/10.1109/tsmc.2018.2875163

    Article  Google Scholar 

  39. Peng, Y., Kou, G., Li, J.: A fuzzy PROMETHEE approach for mining customer reviews in Chinese. Arab. J. Sci. Eng. 39(6), 5245–5252 (2014)

    Article  Google Scholar 

  40. Delgado, M., Verdegay, J.L., Vila, M.A.: Linguistic decision-making models. Int. J. Intell. Syst. 7(5), 479–492 (1992)

    Article  MATH  Google Scholar 

  41. Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, Z.S.: A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 15(6), 593–604 (2006)

    Article  Google Scholar 

  43. Li, D., Liu, C., Gan, W.: A new cognitive model: cloud model. Int. J. Intell. Syst. 24(3), 357–375 (2009)

    Article  MATH  Google Scholar 

  44. Zhou, W., He, J.M.: Intuitionistic fuzzy normalized weighted Bonferroni mean and its application in multi-criteria decision making. J. Appl. Math. 1110-757x, 1–16 (2012)

    Google Scholar 

  45. Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, H., Feng, Y.: On multiple attribute group decision making with linguistic assessment information based on cloud model. Control Decis. 20(6), 679–685 (2005)

    Google Scholar 

  47. Wang, J., Peng, L., Zhang, H., Chen, X.: Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information. Inf. Sci. 274, 177–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Peng, H.G., Wang, J.Q.: Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information. Int. J. Syst. Sci. 48(15), 3316–3333 (2017)

    Article  MATH  Google Scholar 

  49. Wang, J., Peng, J., Zhang, H., Liu, T., Chen, X.: An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 24(1), 171–192 (2014)

    Article  Google Scholar 

  50. Wang, J.Q., Yang, W.E.: Multiple criteria group decision making method based on intuitionistic normal cloud by Monte Carlo simulation. Syst. Eng. Theory Pract. 33(11), 2859–2865 (2013)

    Google Scholar 

  51. Ma, H., Hu, Z.: Recommend trustworthy services using interval numbers of four parameters via cloud model for potential users. Front. Comput. Sci. 9(6), 887–903 (2015)

    Article  Google Scholar 

  52. Peng, H.G., Wang, X.K., Wang, T.L., Wang, J.Q.: Multi-criteria game model based on the pairwise comparisons of strategies with Z-numbers. Appl. Soft Comput. 74, 451–465 (2019)

    Article  Google Scholar 

  53. Peng, H.G., Wang, J.Q.: A multicriteria group decision-making method based on the normal cloud model with Zadeh’s Z-numbers. IEEE Transact. Fuzzy Syst. 26(6), 3246–3260 (2018)

    Article  Google Scholar 

  54. Liang, R.X., Wang, J.Q., Li, L.: Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information. Neural Comput. Appl. 30, 241–260 (2018)

    Article  Google Scholar 

  55. Shannon, C.E.A.: A mathematical theory of communication. AT&T Technol. J. ACM Sigmob. Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  56. Chen, Z.C., Liu, P.H., Pei, Z.: An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8(4), 747–760 (2015)

    Article  Google Scholar 

  57. Liu, P.D., Qin, X.Y.: Power average operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision making. J. Intell. Fuzzy Syst. 32(1), 1029–1043 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, P.D., Qin, X.Y.: Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making. J. Exp. Theor. Artif. Intell. 29(6), 1173–1202 (2017)

    Article  MathSciNet  Google Scholar 

  59. Peng, H.G., Wang, J.Q., Cheng, P.F.: A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int. J. Mach. Learn. Cybernet. 9(6), 1053–1068 (2017)

    Article  Google Scholar 

  60. Zhang, H.Y., Ji, P., Wang, J.Q., Chen, X.H.: A neutrosophic normal cloud and its application in decision-making. Cogn. Comput. 8(4), 649–669 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous reviewers for their great help on this study. This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 502211710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Appendix A: Formula of LINCAA and LINCNWBM Operators

Appendix A: Formula of LINCAA and LINCNWBM Operators

Let \( \gamma_{ij}^{k} = \left( {\left( {Ex_{ij}^{k} ,En_{ij}^{k} ,He_{ij}^{k} } \right),\left( {ex_{ij}^{k} ,en_{ij}^{k} ,he_{ij}^{k} } \right)} \right) \)\( \left( {k = 1,2, \cdots ,q_{i} } \right) \) be a collection of transformed LINCs from the kth online review concerning alternative Ai under product feature Cj. Let \( U = [ {\text{X}}_{\hbox{min} } , {\text{X}}_{\hbox{min} } ] \) be an effective domain. Note that the weight of each online review is equal to \( {1 \mathord{\left/ {\vphantom {1 {q_{i} }}} \right. \kern-0pt} {q_{i} }} \). The overall evaluation value \( \gamma_{ij}^{{}} = \left( {\left( {Ex_{ij}^{{}} ,En_{ij}^{{}} ,He_{ij}^{{}} } \right),\left( {ex_{ij}^{{}} ,en_{ij}^{{}} ,he_{ij}^{{}} } \right)} \right) \) concerning alternative Ai under product feature Cj can be constructed by aggregating all \( \gamma_{ij}^{k} \) of each online review with the LINCAA operator.

$$ \begin{aligned} & LINCAA\left( {\gamma_{ij}^{1} ,\gamma_{ij}^{2} , \ldots ,\gamma_{ij}^{{q_{i} }} } \right) = \mathop \oplus \limits_{k = 1}^{{q_{i} }} \frac{1}{{q_{i} }}\gamma_{ij}^{k} \\ & \quad = \left( {X_{\hbox{max} } \left( {1 - \prod\limits_{k = 1}^{{q_{i} }} {\left( {1 - \frac{{Ex_{ij}^{k} }}{{X_{\hbox{max} } }}} \right)}^{{\frac{1}{{q_{i} }}}} } \right),\;\left( {\sum\limits_{k = 1}^{{q_{i} }} {\frac{1}{{q_{i} }}\left( {En_{ij}^{k} } \right)^{2} } } \right)^{{\frac{1}{2}}} ,\;\left( {\sum\limits_{k = 1}^{{q_{i} }} {\frac{1}{{q_{i} }}\left( {He_{ij}^{k} } \right)^{2} } } \right)^{{\frac{1}{2}}} ,} \right. \\ & \quad \left. {X_{\hbox{max} } \left( {\prod\limits_{k = 1}^{{q_{i} }} {\left( {\frac{{ex_{ij}^{k} }}{{X_{\hbox{max} } }}} \right)}^{{\frac{1}{{q_{i} }}}} } \right),\;\left( {\sum\limits_{k = 1}^{{q_{i} }} {\frac{1}{{q_{i} }}\left( {en_{ij}^{k} } \right)^{2} } } \right)^{{\frac{1}{2}}} ,\;\left( {\sum\limits_{k = 1}^{{q_{i} }} {\frac{1}{{q_{i} }}\left( {he_{ij}^{k} } \right)^{2} } } \right)^{{\frac{1}{2}}} } \right); \\ \end{aligned} $$
(10)

The overall LINC information of each alternative product \( \gamma_{i}^{{}} \) can be calculated by aggregating all \( \gamma_{ij}^{{}} \) with the LINCNWBM operator by considering the interrelationships among product features. The weight vectors of product features are obtained by using the entropy-weighted method, denoted as \( w = \left( {w_{1} ,w_{2} , \ldots ,w_{m} } \right)^{\text{T}} \).

$$ \begin{aligned} & LINCNWBM_{w}^{p,q} \left( {\gamma_{i1} ,\gamma_{i2} , \ldots ,\gamma_{im} } \right) = \left( {\mathop \oplus \limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\gamma_{ij}^{p} \otimes \gamma_{il}^{q} } \right)} \right)^{{\frac{1}{p + q}}} \\ & \quad = \left( {X_{\hbox{max} } \left( {1 - \prod\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\left( {1 - \left( {\frac{{Ex_{ij} }}{{X_{\hbox{max} } }}} \right)^{p} \left( {\frac{{Ex_{il} }}{{X_{\hbox{max} } }}} \right)^{q} } \right)}^{{\frac{{w_{i} w_{j} }}{{1 - w_{i} }}}} } \right)^{{\frac{1}{p + q}}} ,\;\left( {\sum\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\frac{{w_{i} w_{j} }}{{1 - w_{i} }}En_{ij}^{2p} En_{il}^{2q} } } \right)^{{\frac{1}{2p + 2q}}} ,\;\left( {\sum\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\frac{{w_{i} w_{j} }}{{1 - w_{i} }}He_{ij}^{2p} He_{il}^{2q} } } \right)^{{\frac{1}{2p + 2q}}} ,} \right. \\ & \quad \left. {X_{\hbox{max} } \left( {1 - \left( {1 - \prod\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\left( {1 - \left( {1 - \frac{{ex_{ij} }}{{X_{\hbox{max} } }}} \right)^{p} \left( {1 - \frac{{ex_{il} }}{{X_{\hbox{max} } }}} \right)^{q} } \right)}^{{\frac{{w_{i} w_{j} }}{{1 - w_{i} }}}} } \right)^{{\frac{1}{p + q}}} } \right),\;\left( {\sum\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\frac{{w_{i} w_{j} }}{{1 - w_{i} }}en_{ij}^{2p} en_{il}^{2q} } } \right)^{{\frac{1}{2p + 2q}}} ,\;\left( {\sum\limits_{\begin{subarray}{l} l,j = 1 \\ l \ne j \end{subarray} }^{m} {\frac{{w_{i} w_{j} }}{{1 - w_{i} }}he_{ij}^{2p} he_{il}^{2q} } } \right)^{{\frac{1}{2p + 2q}}} } \right). \\ \end{aligned} $$
(11)

The aggregated results after using Eqs. (10) and (11) are still LINCs and satisfy the properties of reducibility, commutativity, idempotency, monotonicity and boundedness. The processes proving such findings are omitted here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Wang, Jq. A Linguistic Intuitionistic Cloud Decision Support Model with Sentiment Analysis for Product Selection in E-commerce. Int. J. Fuzzy Syst. 21, 963–977 (2019). https://doi.org/10.1007/s40815-019-00606-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00606-0

Keywords

Navigation