Skip to main content

Advertisement

Log in

The Distributed Adaptive Finite-Time Chattering Reduction Containment Control for Multiple Ocean Bottom Flying Nodes

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The ocean bottom flying node (OBFN) is a novel autonomous underwater vehicle (AUV) system which could explore the oil and gas resources in deep water. This paper investigates the distributed finite-time chattering reduction containment control problem for multiple OBFNs under directed communication topology. The model uncertainties and external disturbances are considered. By defining the containment error variables and selecting high-order sliding variable properly, a distributed finite-time containment control strategy is developed. The discontinuous sign function is contained in the derivative of the control protocol so as to eliminate the chattering phenomenon. An adaptive law is designed to make efficiency estimation and compensation for the upper bounds of model uncertainties and external disturbances. Combined with the graph theory and matrix theory, the Lyapunov method is utilized to demonstrate that the follower OBFNs could enter the convex hull formed by the leader OBFNs in finite time. Numerical simulation is provided to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ge, X., Han, Q., Ding, D., Zhang, Z., Ning, B.: A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing 275, 1684–1701 (2017)

    Article  Google Scholar 

  2. Wang, N., Su, S., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)

    Article  Google Scholar 

  3. Wang, N., Sun, J., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. 26(2), 869–883 (2018)

    Article  Google Scholar 

  4. Melo, J., Matos, A.: Tracking multiple autonomous underwater vehicles. Auton. Robot. (2018). https://doi.org/10.1007/s10514-018-9696-7

    Google Scholar 

  5. Wang, N., Su, S., Han, M., Chen, W.: Backpropagating constraints-based trajectory tracking Control of a quadrotor with constrained actuator dynamics and complex unknowns. IEEE Trans. Syst. Man Cybern. Syst. pp. 1–16 (2018)

  6. Wang, N., Sun, Z., Yin, J., Su, S., Sharma, S.: Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances. IEEE Access 6, 14059–14070 (2018)

    Article  Google Scholar 

  7. Fabiani, F., Fenucci, D., Caiti, A.: A distributed passivity approach to AUV teams control in cooperating potential games. Ocean Eng. 157, 152–163 (2018)

    Article  Google Scholar 

  8. Lesire, C., Infantes, G., Gateau, T., Barbier, M.: A distributed architecture for supervision of autonomous multi-robot missions. Auton. Robot. 40, 1343–1362 (2016)

    Article  Google Scholar 

  9. Yin, S., Yang, H., Kaynak, O.: Coordination task triggered formation control algorithm for multiple marine vessels. IEEE Trans. Ind. Electron. 64(6), 4984–4993 (2017)

    Article  Google Scholar 

  10. Wang, H., Li, Y., Liu, K.: Globally stable adaptive dynamic surface control for cooperative path following of multiple underactuated autonomous underwater vehicles. Asian J. Control. 20(3), 1204–1220 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, H., Xie, P., Yan, W.: Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles. IEEE Trans. Ind. Electron. 64(6), 5004–5013 (2017)

    Article  Google Scholar 

  12. Wang, H., Liu, K., Li, S.: Command filter based globally stable adaptive neural control for cooperative path following of multiple underactuated autonomous underwater vehicles with partial knowledge of the reference speed. Neurocomputing 275, 1478–1489 (2018)

    Article  Google Scholar 

  13. Klotz, J., Cheng, T., Dixon, W.E.: Robust containment control in a leader–follower network of uncertain Euler–Lagrange systems. Int. J. Robust Nonlinear Control 26, 3791–3805 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 993–1004 (2016)

    Article  Google Scholar 

  15. Viegas, D., Batista, P., Oliveira, P., Silvestre, C.: Discrete-time distributed Kalman filter design for formations of autonomous vehicles. Control Eng. Pract. 75, 55–68 (2018)

    Article  Google Scholar 

  16. Ma, C., Zeng, Q.: Distributed formation control of 6-DOF autonomous underwater vehicles networked by sampled-data information under directed topology. Neurocomputing 154, 33–40 (2015)

    Article  Google Scholar 

  17. Abdessameud, A., Polushin, I.G., Tayebi, A.: Motion coordination of thrust-propelled underactuated vehicles with intermittent and delayed communications. Syst. Control Lett. 79, 15–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuan, C., Licht, S., He, H.: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans. Cybern. 48(10), 2920–2934 (2017)

    Article  Google Scholar 

  19. Peng, Z., Wang, D., Wang, W., Liu, L.: Containment control of networked autonomous underwater vehicles: a predictor-based neural DSC design. ISA Trans. 59, 160–171 (2015)

    Article  Google Scholar 

  20. Peng, Z., Wang, D., Shi, Y., Wang, H., Wang, W.: Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders. Inf. Sci. 316, 163–179 (2015)

    Article  MATH  Google Scholar 

  21. Yoo, S.J., Park, B.S.: Guaranteed performance design for distributed bounded containment control of networked uncertain underactuated surface vessels. J. Frankl. Inst. Eng. Appl. Math. 354, 1584–1602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, N., Lv, S., Zhang, W., Liu, Z., Er, M.J.: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Eng. 145, 406–415 (2017)

    Article  Google Scholar 

  23. Wang, N., Sun, Z., Zheng, Z., Zhao, H.: Finite-time sideslip observer-based adaptive fuzzy path following control of underactuated marine vehicles with time-varying large sideslip. Int. J. Fuzzy Syst. 20(6), 1767–1778 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ding, S., Zheng, W., Sun, J., Wang, J.: Second-order sliding-mode controller design and its implementation for buck converters. IEEE Trans. Ind. Inform. 14(5), 1990–2000 (2018)

    Article  Google Scholar 

  25. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, Y., Duan, Z., Wen, G., Chen, G.: Distributed finite-time tracking of multiple non-identical second-order nonlinear systems with settling time estimation. Automatica 64, 86–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Yue, D., Yin, X., Hu, S., Dou, C.: Finite-time distributed event-triggered consensus control for multi-agent systems. Inf. Sci. 339, 132–142 (2016)

    Article  MATH  Google Scholar 

  28. Sun, Y., Ma, G., Liu, M., Li, C.: Distributed finite-time coordinated control for multi-robot systems. Trans. Inst. Meas. Control. 40(9), 1–16 (2017)

    Google Scholar 

  29. Guo, T., Wang, J., Liao, F., Teo, T.S.H.: Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst. 17(9), 2419–2429 (2016)

    Article  Google Scholar 

  30. Du, H., Yu, X., Chen, M.Z.Q., Li, S.: Chattering-free discrete-time sliding mode control. Automatica 68, 87–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  32. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  33. Wang, N., Sun, Z., Su. S., Wang. Y.: Fuzzy uncertainty observer based path following control of underactuated marine vehicles with unmodelled dynamics and disturbances. In: International Conference on Fuzzy Theory and Its Applications, pp. 1–6 (2017)

  34. Shojaei, K.: Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing 194, 372–384 (2016)

    Article  Google Scholar 

  35. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Article  Google Scholar 

  36. Zhang, G., Zhang, X., Zheng, Y.: Adaptive neural path-following control for underactuated ships in fields of marine practice. Ocean Eng. 104, 558–567 (2015)

    Article  Google Scholar 

  37. Yi, B., Qiao, L., Zhang, W.: Two-time scale path following of underactuated marine surface vessels: design and stability analysis using singular perturbation methods. Ocean Eng. 124, 287–297 (2016)

    Article  Google Scholar 

  38. Wang, N., Sun, J., Han, M., Zheng, Z., Er, M.J.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3747–3760 (2017)

    MathSciNet  Google Scholar 

  39. Chen, L., Li, C., Sun, Y., Ma, G.: Distributed chattering reduction finite-time containment control for multiple Euler–Lagrange systems. J. Harbin Inst. Technol. 50(10), 49–56 (2018)

    Google Scholar 

  40. Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE-ASME Trans. Mechatron. 14(2), 219–228 (2009)

    Article  Google Scholar 

  41. Wang, Y., Zhang, M., Wilson, P.A., Liu, X.: Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault. Ocean Eng. 110, 15–24 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant (Nos. U1713205 and 61803119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Chen, H., Sun, Y. et al. The Distributed Adaptive Finite-Time Chattering Reduction Containment Control for Multiple Ocean Bottom Flying Nodes. Int. J. Fuzzy Syst. 21, 607–619 (2019). https://doi.org/10.1007/s40815-018-0592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0592-2

Keywords

Navigation