Skip to main content

Advertisement

Log in

Improve the Accuracy of Recurrent Fuzzy System Design Using an Efficient Continuous Ant Colony Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new population-based evolutionary optimization algorithm, elite-mixed continuous ant colony optimization with central initialization (EMCACO-C), for improving the accuracy of Takagi–Sugeno–Kang-type recurrent fuzzy network (TRFN) designs. The EMCACO-C is a stochastic search algorithm. The EMCACO-C initializes the ant solutions on concentrative region around the center of the search range followed by a new designed elite-mixed continuous ant colony optimization to generate new solutions. The EMCACO-C mixes the few best elites to generate the directional solutions for guiding and exploring possible promising regions. Then the EMCACO-C employs the Gaussian random sampling to exploit further the directional solutions for finding better solutions. The methodology similarities and differences between the EMCACO-C and genetic algorithm are analyzed. The performances of the EMCACO-C for TRFN designs are verified in the simulations of five application examples including dynamic system control, dynamic system identification, and chaotic series prediction. The EMCACO-C performance is also compared with other swarm-based evolutionary algorithms in the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang, J., Morris, A.J.: Recurrent neuro-fuzzy networks for nonlinear process modeling. IEEE Trans. Neural Netw. 10(2), 313–326 (1999)

    Article  Google Scholar 

  2. Wang, Y.C., Chien, C.J., Teng, C.C.: Direct adaptive iterative learning of control of nonlinear systems using output-recurrent fuzzy neural network. IEEE Trans. Syst. Man Cybern. B Cybern. 34(3), 1348–1359 (2004)

    Article  Google Scholar 

  3. Mouzouris, G.C., Mendel, J.M.: Dynamic nonsingleton fuzzy logic systems for nonlinear modeling. IEEE Trans. Fuzzy Syst. 5(2), 199–208 (1997)

    Article  Google Scholar 

  4. Savran, A.: An adaptive recurrent fuzzy system for nonlinear identification. Appl. Soft Comput. 7(2), 593–600 (2007)

    Article  Google Scholar 

  5. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8(4), 349–366 (2000)

    Article  Google Scholar 

  6. Lin, C.J., Chin, C.C.: Prediction and identification using wavelet based recurrent fuzzy neural networks. IEEE Trans. Syst. Man Cybern. B Cybern. 34(5), 2144–2154 (2004)

    Article  Google Scholar 

  7. Juang, C.F., Lin, Y.Y., Tu, C.C.: A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets Syst. 161(19), 2552–2568 (2010)

    Article  MathSciNet  Google Scholar 

  8. Juang, C.F., Lin, C.T.: A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Netw. 10(4), 828–845 (1999)

    Article  Google Scholar 

  9. Juang, C.F.: A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans. Fuzzy Syst. 10(2), 155–170 (2002)

    Article  Google Scholar 

  10. Lin, Y.-Y., Chang, J.-Y., Lin, C.-T.: Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans. Neural Netw. 24(2), 310–321 (2013)

    Article  Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Surmann, H., Maniadakis, M.: Learning feed-forward and recurrent fuzzy systems: a genetic approach. J. Syst. Architect. 47(7), 649–662 (2001)

    Article  Google Scholar 

  13. Mucients, M., Moreno, D.L., Bugarin, A., Barro, S.: Design of a fuzzy controller in mobile robotics using genetic algorithms. Appl. Soft Comput. 7(2), 540–546 (2007)

    Article  Google Scholar 

  14. Lin, C.J.: A GA-based neural fuzzy system for temperature control. Fuzzy Sets Syst. 143(2), 311–333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, F.J., Huang, P.K., Chou, W.D.: Recurrent-fuzzy-neural-network-controlled linear induction motor servo drive using genetic algorithms. IEEE Trans. Ind. Electron. 54(3), 1449–1461 (2007)

    Article  Google Scholar 

  16. Eberchart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings International Symposium on Micro Machine and Human Science, Nagoya, pp. 39–43 (1995)

  17. Juang, C.F., Chung, I.F., Hsu, C.H.: Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization. Fuzzy Sets Syst. 158(18), 1979–1996 (2007)

    Article  MATH  Google Scholar 

  18. Khanesar, M.A., Shoorehdeli, M.A., Teshnehlab, M.: Hybrid training of recurrent fuzzy neural network model. In: Proceedings of the International Conference on Mechatronics and Automation, pp. 2598–2603 (2007)

  19. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2), 997–1006 (2004)

    Article  Google Scholar 

  20. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  21. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  22. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperating learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  23. Stutzle, T., Hoos, H.H.: Max–Min ant system. Future Gener. Comput. Syst. 16(9), 889–914 (2000)

    Article  MATH  Google Scholar 

  24. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  25. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)

    Article  Google Scholar 

  26. Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)

    Article  Google Scholar 

  27. Castillo, O., Lizárraga, E., Soria, J., Melin, P., Valdez, F.: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)

    Article  MathSciNet  Google Scholar 

  28. Valdez, F., Castillo, O., Melin, P.: Ant colony optimization for the design of Modular Neural Networks in pattern recognition. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), pp. 163–168 (2016)

  29. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Juang, C.F., Hung, C.W., Hsu, C.H.: Rule-based cooperative continuous ant colony optimization to improve the accuracy of fuzzy system design. IEEE Trans. Fuzzy Syst. 22(4), 723–735 (2014)

    Article  Google Scholar 

  31. Chen, C.C., Shen, L.P., Huang, C.F., Chang, B.R.: Assimilation-accommodation mixed continuous ant colony optimization for fuzzy system design. Eng. Comput. 33(7), 1882–1898 (2016)

    Article  Google Scholar 

  32. Juang, C.F., Chang, P.H.: Recurrent fuzzy system design using elite-guided continuous ant colony optimization. Appl. Soft Comput. 11(2), 2687–2697 (2011)

    Article  Google Scholar 

  33. Chen, C.C., Shen, L.P.: Recurrent fuzzy system design using mutation-aided elite continuous ant colony optimization. In: Proceedings of IEEE International Conferences on Fuzzy Systems, pp. 1642–1648 (2016)

  34. Eiben, A.E., Raue, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recombination. In: Proceedings of the Third Conference on Parallel Problem Solving from Nature, pp. 78–87 (1994)

  35. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput 1(1), 3–18 (2011)

    Article  Google Scholar 

  36. Lehman, B., Bentsman, J., Lunel, S.V., Verriest, E.I.: Vibrational control of nonlinear time lag systems with bounded delay: averaging theory, stabilizability, and transient behavior. IEEE Trans. Automat. Control 39(5), 898–912 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology, Taiwan under Grants MOST 104-2221-E-415-006 and MOST 105-2221-E-415-018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chung Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Shen, L.P. Improve the Accuracy of Recurrent Fuzzy System Design Using an Efficient Continuous Ant Colony Optimization. Int. J. Fuzzy Syst. 20, 817–834 (2018). https://doi.org/10.1007/s40815-018-0458-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0458-7

Keywords

Navigation