Skip to main content
Log in

Dissipativity-Based Reliable Interval Type-2 Fuzzy Filter Design for Uncertain Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The problem of dissipativity-based reliable fuzzy filter design for a category of uncertain nonlinear discrete-time systems is investigated based on the interval type-2 (IT2) T–S fuzzy approach. Uncertainties, which exist in considered systems, are described via adopting both lower membership functions and upper membership functions with corresponding weighting coefficients. In the design process, a vital problem, sensor failure, is taken into consideration. To improve the flexibility of filter design, an IT2 fuzzy filter model is employed, in which membership functions are different from those of the system model. Firstly, sufficient criteria are proposed to ensure the asymptotic stability with strict dissipativity of filtering error system. Following the proposed sufficient conditions, sufficient criteria for dissipative IT2 fuzzy filter design are proposed to estimate unknown system dynamics, where cone complementary linear algorithm is introduced to solve the bilinear problem. Secondly, both \(\mathcal{H}_{\infty }\) and passive IT2 fuzzy filter design algorithms are presented as extensions. Finally, simulation results are given to illustrate the effectiveness of the IT2 fuzzy reliable filtering approach proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, H., Jing, X., Lam, H.K., Shi, P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Cybern. 44(7), 1111–1126 (2014)

    Article  Google Scholar 

  2. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 1–12 (2017)

    Article  Google Scholar 

  3. Bai, L., Zhou, Q., Wang, L., Yu, Z., Li, H.: Observer-based adaptive control for stochastic nonstrict-feedback systems with unknown backlash-like hysteresis. Int. J. Adapt. Control Signal Process. https://doi.org/10.1002/acs.2780

  4. Wang, W.-Y., Chien, Y.-H., Li, I.-H.: An on-line robust and adaptive TS fuzzy-neural controller for more general unknown systems. Int. J. Fuzzy Syst. 10(1) (2008)

  5. Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, C., Liu, J., Xiong, Y., Wu, L.: Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. (2017). https://doi.org/10.1109/TNNLS.2017.2712619

  7. Su, S.-F., Chang, J.-C., Chen, S.-S.: The study on direct adaptive fuzzy controllers. Int. J. Fuzzy Syst. 8(3), 150–159 (2006)

    MathSciNet  Google Scholar 

  8. Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  9. Wu, L., Shi, P., Gao, H.: State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans. Autom. Control 55(5), 1213–1219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, H., Wang, J., Wu, L., Lam, H.-K., Gao, Y.: Optimal guaranteed cost sliding mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2648855

  11. Li, H., Wang, J., Du, H., Karimi, H.R.: Adaptive sliding mode control for Takagi-Sugeno fuzzy systems and its applications. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2686357

  12. Pan, Y., Yang, G.-H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. (2017). https://doi.org/10.1016/j.fss.2017.05.010

  13. Pan, Y., Yang, G.: Fault detection for interval type-2 fuzzy stochastic systems with D stability constraint. Int. J. Syst. Sci. 48(1), 43–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wong, C.-C., Wang, H.-Y., Li, S.-A., Cheng, C.-T.: Fuzzy controller designed by ga for two-wheeled mobile robots. Int. J. Fuzzy Syst. 9(1), 22–30 (2007)

    Google Scholar 

  15. Wang, L., Li, H., Zhou, Q., Lu, R.: Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Trans. Cybern. 47(9), 2400–2412 (2017)

    Article  Google Scholar 

  16. Wu, C., Liu, J., Jing, X., Li, H., Wu, L.: Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2420–2430 (2017)

    Article  Google Scholar 

  17. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  MATH  Google Scholar 

  18. Benzaouia, A., Hmamed, A., Hajjaji, A.E.: Stabilization of controlled positive discrete-time T–S fuzzy systems by state feedback control. Int. J. Adapt. Control Signal Process. 24(12), 1091–1106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lian, K.Y., Hong, C.W.: Current-sensorless flyback converters using integral T–S fuzzy approach. Int. J. Fuzzy Syst. 15(1), 66–74 (2013)

    MathSciNet  Google Scholar 

  20. Yu, J., Yi, Z.: Stability analysis and fuzzy control for uncertain delayed T–S nonlinear systems. Int. J. Fuzzy Syst. 18(6), 1031–1038 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lam, H.K., Xiao, B., Yu, Y., Yin, X., Han, H., Tsai, S.-H., Chen, C.-S.: Membership-function-dependent stability analysis and control synthesis of guaranteed cost fuzzy-model-based control systems. Int. J. Fuzzy Syst. 18(4), 537–549 (2016)

    Article  MathSciNet  Google Scholar 

  22. Pan, Y., Yang, G.-H.: Event-triggered fault detection filter design for nonlinear networked systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2719629

  23. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  24. Mendel, J.M., Liu, F.: Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Trans. Fuzzy Syst. 15(2), 309–320 (2007)

    Article  Google Scholar 

  25. Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179(13), 2175–2193 (2009)

    Article  MATH  Google Scholar 

  26. Biglarbegian, M., Melek, W.W., Mendel, J.M.: On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 798–818 (2010)

    Article  Google Scholar 

  27. Jammeh, E.A., Fleury, M., Wagner, C., Hagras, H., Ghanbari, M.: Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans. Fuzzy Syst. 17(5), 1123–1142 (2009)

    Article  Google Scholar 

  28. Sepúlveda, R., Montiel, O., Castillo, O., Melin, P.: Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA. Appl. Soft Comput. 12(3), 988–998 (2012)

    Article  Google Scholar 

  29. Cao, J., Li, P., Liu, H., Brown, D.: An interval type-2 fuzzy logic controller for quarter-vehicle active suspensions. Proc. Instit. Mech. Eng. Part D J. Autom. Eng. 222(8), 1361–1373 (2008)

    Article  Google Scholar 

  30. Mendel, J.M., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)

    Article  Google Scholar 

  31. Juang, C.F., Chen, C.Y.: Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability. IEEE Trans. Cybern. 43(6), 1781–1795 (2013)

    Article  Google Scholar 

  32. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(3), 617–28 (2008)

    Article  Google Scholar 

  33. Lam, H., Li, H., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014)

    Article  Google Scholar 

  34. Li, H., Wu, C., Wu, L., Lam, H.-K., Gao, Y.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2016)

    Article  Google Scholar 

  35. Willems, J.C.: Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MATH  Google Scholar 

  36. Wu, L., Zheng, W.X., Gao, H.: Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–791 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Choi, H.D., Ahn, C.K., Shi, P., Wu, L., Lim, M.T.: Dynamic output-feedback dissipative control for T–S fuzzy systems with time-varying input delay and output constraints. IEEE Trans. Fuzzy Syst. 25(3), 511–526 (2017)

    Article  Google Scholar 

  38. Su, X., Shi, P., Wu, L., Basin, M.V.: Reliable filtering with strict dissipativity for T–S fuzzy time-delay systems. IEEE Trans. Cybern. 44(12), 2470–2483 (2014)

    Article  Google Scholar 

  39. Shi, P., Su, X., Li, F.: Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Trans. Autom. Control 61(6), 1694–1699 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ahn, C.K., Shi, P., Basin, M.V.: Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. Autom. Control 60(7), 1745–1759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Li.

Additional information

This work was partially supported by the National Natural Science Foundation of China (61622302, 61673072, 61573070, 61773072), the Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306014), and the Department of Education of Guangdong Province (2016KTSCX030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, Q., Wu, C. et al. Dissipativity-Based Reliable Interval Type-2 Fuzzy Filter Design for Uncertain Nonlinear Systems. Int. J. Fuzzy Syst. 20, 390–402 (2018). https://doi.org/10.1007/s40815-017-0413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0413-z

Keywords

Navigation