Skip to main content
Log in

Finite-Time Adaptive Fuzzy Tracking Control for a Class of Nonlinear Systems with Unknown Hysteresis

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An adaptive finite-time tracking control issue for a class of nonlinear systems with unknown hysteresis is considered in this manuscript. We construct a fuzzy adaptive controller on foundation of a backstepping method. We prove that all the signals in the system are semi-global uniformly finite-time bounded under the designed controller, even though unknown hysteresis in the actuator is considered . At last, the validity of the proposed control scheme is demonstrated by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, B., Liu, X.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15(2), 287–300 (2007)

    Article  Google Scholar 

  2. Mao, J., Xiang, Z., Huang, S.: Adaptive finite-time tracking control for a class of switched nonlinear systems with unmodeled dynamics. Neurocomputing 196, 42–52 (2016)

    Article  Google Scholar 

  3. Zhou, Q., Wu, C., Shi, P.: Observer-based adaptive fuzzy tracking control of nonlinear systems with time delay and input saturation. Fuzzy Sets Syst. 316, 49–68 (2017)

    Article  MathSciNet  Google Scholar 

  4. Wang, H., Chen, B., Liu, X., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)

    Article  Google Scholar 

  5. Kayacan, E., Ramonf, H., Saeys, W.: Adaptive neuro-fuzzy control of a spherical rolling robot using sliding-mode-control-theory-based online learning algorithm. IEEE Trans. Cybern. 43(1), 170–179 (2013)

    Article  Google Scholar 

  6. Li, C., Gao, J., Yi, J., Zhang, G.: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2016.2637369

  7. Zhou, Q., Shi, P., Tian, Y., Wang, M.: Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119–2128 (2015)

    Article  Google Scholar 

  8. Niu, B., Karimi, Hamid R., Wang, H., Liu, Y.: Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method. IEEE Trans. Syst. Man Cybern. Syst. 47, 1371–1382 (2017)

    Article  Google Scholar 

  9. Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)

    Article  Google Scholar 

  10. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–411 (2017)

    Google Scholar 

  11. Boulkroune, A.: A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign. Neurocomputing 179, 318–325 (2015)

    Article  Google Scholar 

  12. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Y., Dong, H., Zhang, X., Yang, H.: Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 73, 246–252 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017(5), 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Han, T., Ge, S., Lee, T.: Adaptive neural control for a class of switched nonlinear systems. Syst. Control Lett. 58(2), 109–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, F., Chen, B., Lin, C., Li, X.: Distributed adaptive neural control for stochastic nonlinear multi-agent systems. IEEE Trans. Cybern. 47(7), 1795–1803 (2017)

    Article  Google Scholar 

  18. Niu, B., Liu, Y., Zong, G., Han, Z., Fu, J.: Command filter-Based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems. IEEE Trans. Cybern. (2017). doi:10.1109/TCYB.2016.2647626

  19. Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su, C., Stepanenko, Y., Svoboda, J., Leung, T.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, H., Chen, B., Liu, K., Liu, X., Lin, C.: Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 947–958 (2014)

    Article  Google Scholar 

  22. Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis. IEEE Trans. Fuzzy Syst. 24(1), 140–152 (2016)

    Article  Google Scholar 

  23. Liu, Z., Yu, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2129–2140 (2014)

    Article  Google Scholar 

  24. Bhat, S., Bernstein, S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46(4), 231–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. (2017). doi:10.1109/TCYB.2017.2715980

  29. Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2717804

  30. Liang, Y., Ma, R., Wang, M., Fu, J.: Global finite-time stabilisation of a class of switched nonlinear systems. Int. J. Syst. Sci. 46(16), 2897–904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Y., Hua, C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Syst. 22(3), 631–641 (2014)

    Article  Google Scholar 

  32. Yu, J., Shi, P., Dong, W., Chen, B., Lin, C.: Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 640–645 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  34. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  35. Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ploycarpou, M., Ioannou, P.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Additional information

This work was supported partially by the National Natural Science Foundation of China (Grant No. 61503223), in part by the Project of Shandong Province Higher Educational Science and Technology Program (J15LI09), and in part by China Postdoctoral Science Foundation-funded project 2016M592140, and partially by Shandong innovation postdoctoral program 201603066, and partially by the SDUST Research Fund (2014TDJH102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Wang, F. Finite-Time Adaptive Fuzzy Tracking Control for a Class of Nonlinear Systems with Unknown Hysteresis. Int. J. Fuzzy Syst. 20, 782–790 (2018). https://doi.org/10.1007/s40815-017-0381-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0381-3

Keywords

Navigation