Skip to main content
Log in

Influence of model selection on the temperature field and turbulent energy dissipation rate in a hydraulic system with a complex geometry

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Turbulent flows are characterised by the presence of 'fluctuating scales', or 'structures' of varying magnitude whose effects on mixing, heat transfer and energy dissipation are prominent. The main objective of the study is to explore and exploit two-equation models capable of numerically analysing the dynamic and thermal behaviour of unsteady turbulent incompressible flows, focusing on the variation of temperatures and the rate of turbulent dissipation in a hydraulic structure of complex geometry with its obstacles, erected along the axis of the open channel. The complexity of the physical phenomena taking place in the circular tunnel and the trapezoidal open channel was also emphasised. The work also includes the various numerical simulations that we were able to carry out using the FUENT software, which allowed us to visualise the vortex structures and the energy dissipation. The simulations were carried out using the Reynolds-averaged Navier–Stokes (RANS) model using the closure models: k-ε, RNG k-ε, SST k-ω and K-ω. This model was chosen because it is less expensive in terms of computational time than Direct numerical simulation and large-scale simulations have a very wide range of applications, including heat transfer. The resolution of the incompressible Navier–Stokes equations governing these flows is carried out with the finite volume method, the use of which is particularly motivated by its ability to handle complex geometries. All the simulations were carried out using the FLUENT software, which allowed us to explore, among other things, the turbulent kinetic energy and the temperature distribution in the set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge UniversityPress

    Google Scholar 

  • Benahmed L (2020) Etude de la turbulence dans un ecoulement etabli avec transfert de chaleur. Université AbouBakrBelkaid, Tlemcen, Algérie

  • Guillaume H (2004) Estimation du taux de dissipation d’énergie cinétique turbulente

  • Khanfouf O, Fourar A (2021) Numericalmodeling of isothermalhomogeneous turbulent fows by fnite volumes in a compound hydraulicscheme. Modeling Earth Syst Environ. https://doi.org/10.1007/s40808-021-01196-3

    Article  Google Scholar 

  • Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R (2021) Modelingunsteady turbulent fowsaround immersed obstacles in a channel with complex geometry. Modeling Earth Syst Environ 8:3907–3926

    Article  Google Scholar 

  • Kumar SS, Arul Prakash K (2013) An RNG based K-Epsilon turbulence model using the realizableeddyviscosity formulation. In: 14th European Turbulence Conference (ETC14), 1–4 September 2013, Lyon, France

  • Labert CJ (2012) Simulation numérique d’écoulements turbulents en rotation, confinement et forçage à l’aide d’une méthode de pénalisation. Autre. Ecole Centrale de

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3(2):269–289

    Article  Google Scholar 

  • Menter FR (1994) Two-equationeddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  • Menter FR (2009) Review of the shear-stress transport turbulence model experiencefrom an industrial perspective. Int J Comput Fluid Dyn 23(4):305–316

    Article  Google Scholar 

  • Mohammadi B, Pironneau O (1993) Analysis of the K-epsilon turbulence model

  • Nicoud F (1990) Mécanique des Fluides. Polytechnic Montpellier

  • Romanova D et al (2022) Calibration of the k-ω SST turbulence model for free surfaceflows on mountainslopesusing an experiment. Fluids 7(3):111

    Article  Google Scholar 

  • Roy M (2006) Caractérisation de l’écoulement turbulent en rivière à lit de graviers peu profonde Stratégie d’échantillonnage, interpolation et structure spatiale. Université de Montréal

  • Schiestel R (2005) Modèle de turbulence générique à deux équations de transport

  • Večenaj Z, Belušid D, Grisogono B (2007) Estimation of turbulence kinetic energy dissipation rate in a bora event. In: Proc. 29th Intern. Conf. on Alpine Meteorology, Chambery, France, pp 745–748

  • Viollet P-L, Chabard J-P, Esposito P (1998) Mécanique des fluides appliquée : écoulements incompressibles dans les circuits, canaux et rivières, autour des structures et dans l’environnement. 1998 Presses de l’Ecole Nationale des Ponts et Chaussées. Paris

  • Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shearflows by a double expansion technique. Phys Fluids A 4(7):1510–1520

    Article  Google Scholar 

  • Zhang D (2017) Comparison of various turbulence models for unsteady flow around a finitecircularcylinder at Re=20000. J Phys. https://doi.org/10.1088/1742-6596/910/1/012027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Khanfouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanfouf, O., Fourar, F.Z., Fourar, A. et al. Influence of model selection on the temperature field and turbulent energy dissipation rate in a hydraulic system with a complex geometry. Model. Earth Syst. Environ. 9, 2125–2139 (2023). https://doi.org/10.1007/s40808-022-01591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01591-4

Keywords

Navigation