Skip to main content

Advertisement

Log in

Assessment of the Myitnge River flow responses in Myanmar under changes in land use and climate

  • Review Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

A Correction to this article was published on 02 September 2022

This article has been updated

Abstract

Watershed hydrology changes are mostly influenced by changes in climate and land use and understanding of the interaction between these changes is required for the sustainable water management of water resources. In this study, an integrated approach of land-use modelling, downscaling climate data, and river flow simulation is carried out to detect hydrologic responses of the Myitnge River basin in Myanmar under land use and climate changes. A set of Landsat satellite images (2010, 2011, and 2017) are classified, and Land Change Modeller (LCM) module in the TerrSet model is used to simulate land-use maps for 2030 and 2050. The CanESM2 large-scale general circulation model (GCM) is used to project the near future (2020–2059) climate data. Then, future river flow changes are simulated using the SWAT hydrologic model under changing future climate and land-use conditions. The results of the study show that the annual mean river flow will slightly increase under future climate change, and the changes will be exaggerated when the land-use change occurred simultaneously. This study offers a perspective on the possible hydrologic alteration in the Myitnge River basin under future land use and climate conditions, which can be beneficial for formulating adaption strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  • Abbaspour KC (2012) SWAT-CUP 2012: SWAT calibration and uncertainty programs—a user manual. Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland, 103

  • Adhikari S, Southworth J (2012) Simulating forest cover changes of bannerghatta national park based on a CA—markov model: a remote sensing approach. Remote Sens 4(10):3215–3243

    Article  Google Scholar 

  • Ahiablame L, Sinha T, Paul M, Ji JH, Rajib A (2017) Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. J Hydrol: Reg Stud 14:150–166

    Google Scholar 

  • Ahmed B, Ahmed R (2012) Modelling urban land cover growth dynamics using multi-temporal satellite images: a case study of Dhaka, Bangladesh. ISPRS Int J Geoinf 1(1):3–31

    Article  Google Scholar 

  • Aichouri I, Hani A, Bougherira N, Djabri L, Chaffai H, Lallahem S (2015) River flow model using artificial neural networks. Energy Proc 74:1007–1014

    Article  Google Scholar 

  • Al-Ansari NA, Abdellatif M, Ezeelden M, Ali SS, Knutsson S (2014) Climate change and future long-term trends of rainfall at north-eastern part of Iraq. J Civ Eng Archit 8(6):790–805

    Google Scholar 

  • Alotaibi K, Ghumman A, Haider H, Ghazaw Y, Shafiquzzaman M (2018) Future predictions of rainfall and temperature using GCM and ANN for arid regions: a case study for the Qassim region, Saudi Arabia. Water 10(9):1260

    Article  Google Scholar 

  • Anand J, Gosain AK, Khosa R (2018) Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci Total Environ 644:503–519

    Article  Google Scholar 

  • Anderson JR (1976) A land use and land cover classification system for use with remote sensor data. US Government Printing Office

  • Arnold JG, Allen PM (1996) Estimating hydrologic budgets for three Illinois watersheds. J Hydrol 176(1–4):57–77

    Article  Google Scholar 

  • Ayele GT, Teshale EZ, Yu B, Rutherfurd ID, Jeong J (2017) Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water 9(10):782

    Article  Google Scholar 

  • Barman S, Bhattacharjya RK (2015) Comparison of linear regression, non-linear regression and artificial neural network model for downscaling of rainfall at subansiri river basin, Assam, India. Eur Water 51:51–62

    Google Scholar 

  • Bernetti I, Marinelli N (2010) Evaluation of landscape impacts and land use change: a Tuscan case study for CAP reform scenarios. Aestimum 56:1

    Google Scholar 

  • Bhagwat T, Hess A, Horning N, Khaing T, Thein ZM, Aung K et al (2017) Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014. PLoS ONE 12(5):e0176364

    Article  Google Scholar 

  • Bishop Y, Fienberg S, Holland P (1975) Discrete multivariate analysis: theory and practice. MIT Press, Cambridge

    Google Scholar 

  • Brunnschweiler RO (1970) Contributions to the Post-Silurian geology of Burma (Northern Shan States and Karen State). J Geol Soc Aust 17(1):59–79

    Article  Google Scholar 

  • Cai G, Ren H, Yang L, Zhang N, Du M, Wu C (2019) Detailed urban land use land cover classification at the metropolitan scale using a three-layer classification scheme. Sensors 19(14):3120

    Article  Google Scholar 

  • Castillo CR, Güneralp İ, Güneralp B (2014) Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Appl Geogr 47:154–167

    Article  Google Scholar 

  • Chen Q, Chen H, Wang J, Zhao Y, Chen J, Xu C (2019) Impacts of climate change and land-use change on hydrological extremes in the Jinshan river basin. Water 11(7):1398

    Article  Google Scholar 

  • Clark Labs (2016) March 28, land change modeler Pt.1, [video file]. https://wwwyoutube.com/watch?v=rhMrMh2sp4w&t=82s

  • Congalton RG, Green K (2008) Accessing the accuracy of remotely sensed data principles and practices. Taylor & Francis, Boca Raton, p 59

    Book  Google Scholar 

  • DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186

    Article  Google Scholar 

  • Dile YT, Berndtsson R, Setegn SG (2013) Hydrological response to climate change for Gilgel Abay river, in the lake tana basin-upper Blue Nile basin of Ethiopia. PLoS ONE 8(10):e79296

    Article  Google Scholar 

  • Do Hoai N, Udo K, Mano A (2011) Downscaling global weather forecast outputs using ANN for flood prediction. J Appl Math. https://doi.org/10.1155/2011/246286

  • Duong DT, Tachikawa Y, Shiiba M, Yorozu K (2013) River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3. 2S dataset. J Jpn Soc Civ Eng Ser B1 (Hyd Eng) 69(4):I_37–I_42

    Google Scholar 

  • Eastman JR (2015) Terrset manual. Clark Labs, Jefferson Hills

    Google Scholar 

  • Eastman JR (2016) Terrset manual. Clark Labs, Jefferson Hills

    Google Scholar 

  • Eastman JR, Toledano J (2018) A short presentation of the land change modeler (LCM). Geomatic approaches for modelling land change scenarios. Springer, Cham, pp 499–505

    Book  Google Scholar 

  • El-Khoury A, Seidou O, Lapen DR, Que Z, Mohammadian M, Sunohara M, Bahram D (2015) Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J Environ Manag 151:76–86

    Article  Google Scholar 

  • Fitzgerald RW, Lees BG (1994) Assessing the classification accuracy of multisource remote sensing data. Remote Sens Environ 47(3):362–368

    Article  Google Scholar 

  • Ghaffari G, Keesstra S, Ghodousi J, Ahmadi H (2010) SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, northwest Iran. Hydrol Process: Int J 24(7):892–903

    Article  Google Scholar 

  • Ghimire U, Srinivasan G, Agarwal A (2019) Assessment of rainfall bias correction techniques for improved hydrological simulation. Int J Climatol 39(4):2386–2399

    Article  Google Scholar 

  • Gibson L, Münch Z, Palmer A, Mantel S (2018) Future land cover change scenarios in south african grasslands–implications of altered biophysical drivers on land management. Heliyon. https://doi.org/10.1016/j.heliyon.2018.e00693

  • Guo H, Hu Q, Jiang T (2008) Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang lake basin, china. J Hydrol 355(1–4):106–122

    Article  Google Scholar 

  • Guzha AC, Rufino MC, Okoth S, Jacobs S, Nóbrega RLB (2018) Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa. J Hydrol: Reg Stud 15:49–67

    Google Scholar 

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol: J R Meteorol Soc 27(9):1119–1152

    Article  Google Scholar 

  • Hansan A, binti Pg DS, Ratnayake U, Shams S, Nayan ZB, Rahman EK (2018) Prediction of climate change in Brunei Darussalam using statistical downscaling model. Theor Appl Climatol 133(1–2):343–360

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2018) Comparison of MLP-ANN scheme and SDSM as tools for providing downscaled precipitation for impact studies at daily time scale. J Earth Sci Clim Change 9(475):2

    Google Scholar 

  • Hlásny T, Kočický D, Maretta M, Sitková Z, Barka I, Konôpka M, Hlavatá H (2015) Effect of deforestation on watershed water balance: hydrological modelling-based approach/Vplyv odlesnenia na vodnú bilanciu povodia: prístup na báze hydrologického modelovania. Central Eur For J 61(2):89–100

    Google Scholar 

  • Humboldt State University (2017) GSP 216 Introduction to remotes sensing. http://gis.humboldt.edu/OLM/Courses/GSP_216_Online/lesson6-2/metrics.html

  • IPCC Climate Change (2013) The physical science basis by intergovernmental panel on climate change. Cambridge University Press (CUP), Cambridge, p 2009

    Google Scholar 

  • IPCC Climate Change (2014) Impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge, p 2014

    Google Scholar 

  • IPCC Climate Change (2014b) synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, p 151

  • IPCC Climate Change IC (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK 2007

  • Islam MS, Ahmed R (2011) Land use change prediction in Dhaka city using GIS aided Markov chain modelling. J Life Earth Sci 6:81–89

    Article  Google Scholar 

  • Jiang Z (2007) The road extension model in the land change modeler for ecological sustainability of IDRISI. Paper presented at the proceedings of the 15th annual ACM international symposium on advances in geographic information systems, p 13

  • Kavian A, Golshan M, Abdollahi Z (2017) Flow discharge simulation based on land use change predictions. Environ Earth Sci 76(16):588

    Article  Google Scholar 

  • Khaing M (2015) Assessing climate change impacts on hydropower generation in the Myitnge river basin, Myanmar. Hydropower’s15, Norway, 2015

  • Labib K, Vemuri VR (2006) An application of principal component analysis to the detection and visualization of computer network attacks. In: Annales des telecommunications. Springer, Cham, vol 61, no 1–2, pp 218–234

  • Li Z, Liu WZ, Zhang XC, Zheng FL (2009) Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J Hydrol 377(1–2):35–42

    Article  Google Scholar 

  • Liu QQ, Chen L, Li JC, Singh VP (2004) Two-dimensional kinematic wave model of overland-flow. J Hydrol 291:28–41

    Article  Google Scholar 

  • López-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the pyrenees from a set of regional climate models. Int J Climatol: J R Meteorol Soc 28(11):1535–1550

    Article  Google Scholar 

  • Lørup JK, Refsgaard JC, Mazvimavi D (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: case studies from Zimbabwe. J Hydrol 205(3–4):147–163

    Article  Google Scholar 

  • Losiri C, Nagai M, Ninsawat S, Shrestha R (2016) Modelling urban expansion in Bangkok metropolitan region using demographic–economic data through cellular automata-markov chain and multi-layer perceptron-markov chain models. Sustainability 8(7):686

    Article  Google Scholar 

  • Luo Y, Zhang M (2009) Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modelling using SWAT. Environ Pollut 157(12):3370–3378

    Article  Google Scholar 

  • Mas J, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111

    Article  Google Scholar 

  • Memarian H, Balasundram SK, Abbaspour KC, Talib JB, Boon Sung CT, Sood AM (2014) SWAT-based hydrological modelling of tropical land-use scenarios. Hydrol Sci J 59(10):1808–1829

    Article  Google Scholar 

  • Miao Q, Pan B, Wang H, Hsu K, Sorooshian S (2019) Improving monsoon precipitation prediction using combined convolutional and long short-term memory neural network. Water 11(5):977

    Article  Google Scholar 

  • Michalski F, Peres CA, Lake IR (2008) Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. Environ Conserv 35(2):93–103

    Article  Google Scholar 

  • Mirkatouli J, Hosseini A, Neshat A (2015) Analysis of land use and land cover spatial pattern based on markov chains modelling. City Territ Archit 2(1):4

    Article  Google Scholar 

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (lcm) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic’SASA. https://doi.org/10.2298/IJGI1401111M

  • MONREC (2019) Myanmar climate change strategy (2018–2030)

  • NECC (2012) Myanmar’s National Adaptation Programme of Action (NAPA) to Climate Change. National Coordinating Body (National Environmental Conservation Committee, Ministry of Environmental Conservation and Forestry, Myanmar), p 128

  • Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool user’s manual, version 2000, grassland. Soil and Water Research Laboratory, Agricultural Research Service and Black land Research Centre, Texas Agricultural Experiment Station, Temple, Texas, USA

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros G et al (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669

    Article  Google Scholar 

  • Nie W, Yuan Y, Kepner W, Nash MS, Jackson M, Erickson C (2011) Assessing impacts of Land use and Landcover changes on hydrology for the upper San Pedro watershed. J Hydrol 407(1–4):105–114

    Article  Google Scholar 

  • NIPPON KOEI (1999) Feasibility study on Yeywa Hydropower Project. Final Report, Volume 1, Main Report

  • NWRC (National Water Resources Committee) (2017) Ayeyarwady State of the Basin Assessment (SOBA), Synthesis report

  • Olivera F, DeFee BB (2007) Urbanization and its effect on runoff in the whiteoak bayou watershed, texas 1. JAWRA 43(1):170–182

    Google Scholar 

  • Olmedo CMT, Paegelow M, Mas J (2013) Interest in intermediate soft-classified maps in land change model validation: suitability versus transition potential. Int J Geogr Inf Sci 27(12):2343–2361

    Article  Google Scholar 

  • Oo HT, Zin WW, Kyi CCT (2019) Assessment of future climate change projections using multiple global climate models. Civ Eng J 5(10):2152–2166

    Article  Google Scholar 

  • Ozturk D (2015) Urban growth simulation of atakum (samsun, turkey) using cellular automata-markov chain and multi-layer perceptron-markov chain models. Remote Sens 7(5):5918–5950

    Article  Google Scholar 

  • Phuong DND, Duong TQ, Liem ND, Tram VNQ, Cuong DK, Loi NK (2020) Projections of future climate change in the Vu Gia Thu Bon River Basin, Vietnam by using statistical downscaling model (SDSM). Water 12(3):755

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016

    Google Scholar 

  • Pontius RG Jr (2002) Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sens 68(10):1041–1050

    Google Scholar 

  • Pontius RG Jr, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agr Ecosyst Environ 101(2–3):251–268

    Article  Google Scholar 

  • Rajan DK (2010) Understanding the drivers affecting land use change in Ecuador: an application of the Land Change Modeler software

  • Rao M, Rabinowitz A, Khaing ST (2002) Status review of the protected-area system in Myanmar, with recommendations for conservation planning. Conserv Biol 16(2):360–368

    Article  Google Scholar 

  • Reddy CS, Singh S, Dadhwal VK, Jha CS, Rao NR, Diwakar PG (2017) Predictive modelling of the spatial pattern of past and future forest cover changes in India. J Earth Syst Sci 126(1):8

    Article  Google Scholar 

  • Rimal B, Zhang L, Keshtkar H, Wang N, Lin Y (2017) Monitoring and modelling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS Int J Geo-Inf 6(9):288

    Article  Google Scholar 

  • Romano G, Abdelwahab OM, Gentile F (2018) Modelling land use changes and their impact on sediment load in a Mediterranean watershed. CATENA 163:342–353

    Article  Google Scholar 

  • Roy HG, Fox DM, Emsellem K (2014) Predicting land cover change in a Mediterranean catchment at different time scales. In: International conference on computational science and its applications, pp 315–330

  • Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA 37(5):1169–1188

    Google Scholar 

  • Saw MMM, Ji-Qing L (2019) Review on hydropower in Myanmar. Appl Water Sci 9(4):118

    Article  Google Scholar 

  • Shooshtari JS, Shayesteh K, Gholamalifard M, Azari M, Serrano-Notivoli R, López-Moreno JI (2017) Impacts of future land cover and climate change on the water balance in northern Iran. Hydrol Sci J 62(16):2655–2673

    Article  Google Scholar 

  • Shrestha S, Htut AY (2016) Land use and climate change impacts on the hydrology of the Bago river basin, Myanmar. Environ Model Assess 21(6):819–833

    Article  Google Scholar 

  • Sokolova GV, Verkhoturov AL, Korolev SP (2019) Impact of Deforestation on Streamflow in the Amur River Basin. Geosciences 9(6):262

    Article  Google Scholar 

  • Thomas M, De Brabanter K, De Moor B (2014) New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems. BMC Bioinf 15(1):137

    Article  Google Scholar 

  • Timm OE, Giambelluca TW, Diaz HF (2015) Statistical downscaling of rainfall changes in Hawai’i based on the CMIP5 global model projections. J Geophys Res: Atmos 120(1):92–112

    Article  Google Scholar 

  • Tu J (2009) Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J Hydrol 379(3–4):268–283

    Article  Google Scholar 

  • USGS (2015) Landsat surface reflectance data, (ver. 1.1, March 27, 2019): U.S. Geological Survey Fact Sheet 2015–3034

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5

    Article  Google Scholar 

  • Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting kappa to account for change in the accuracy assessment of land-use change models. Ecol Model 222(8):1367–1375

    Article  Google Scholar 

  • Voight C, Hernandez-Aguilar K, Garcia C, Gutierrez S (2019) Predictive modelling of future forest cover change patterns in Southern Belize. Remote Sens 11(7):823

    Article  Google Scholar 

  • Vu MT, Aribarg T, Supratid S, Raghavan SV, Liong SY (2016) Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok? Theor Appl Climatol 126(3–4):453–467

    Article  Google Scholar 

  • Wang W, Zhang C, Allen JM, Li W, Boyer MA, Segerson K, Silander JA (2016) Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land 5(3):25

    Article  Google Scholar 

  • Wichakul S, Tachikawa Y, Shiiba M, Yorozu K (2015) River discharge assessment under a changing climate in the Chao Phraya River, Thailand by using MRI-AGCM3. 2S. Hydrol Res Lett 9(4):84–89

    Article  Google Scholar 

  • Wijesekara GN, Gupta A, Valeo C, Hasbani JG, Qiao Y, Delaney P, Marceau DJ (2012) Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J Hydrol 412:220–232

    Article  Google Scholar 

  • Xian G, Homer C, Fry J (2009) Updating the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens Environ 113(6):1133–1147

    Article  Google Scholar 

  • Zawadzka J, Mayr T, Bellamy P, Corstanje R (2015) Comparing physiographic maps with different categorisations. Geomorphology 231:94–100

    Article  Google Scholar 

  • Zhang S, Li Z, Lin X, Zhang C (2019) Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water 11(7):1373

    Article  Google Scholar 

  • Zhao A, Zhu X, Liu X, Pan Y, Zuo D (2016) Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA 137:318–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soe Thiha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiha, S., Shamseldin, A.Y. & Melville, B.W. Assessment of the Myitnge River flow responses in Myanmar under changes in land use and climate. Model. Earth Syst. Environ. 7, 1393–1415 (2021). https://doi.org/10.1007/s40808-020-00926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-020-00926-3

Keywords

Navigation