Skip to main content

Advertisement

Log in

Assessment of the thermal response of variations in land surface around an urban area

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The ancient city of Ibadan has experienced major development and this development has led to modifications of the land surface over the years. This study assessed the changes that have occurred in the Land Use Land Cover (LULC) of Ibadan city using satellite image from Landsat covering 1984, 2000 and 2016. Supervised classification scheme was done using the maximum likelihood classifier for classifying the images. The extent of change of the LULC classes was performed on the classified images using Land Change Modeller (LCM). The implication of the change in LULC on Land Surface Temperature (LST) and related indices was assessed. Over a period of 32 years (1984–2016), the area coverage of the built-up region of Ibadan increased from 11.23 to 54.64 hectares in thousands with a net change of 8%. Thick vegetation was identified as the major contributor to the increase in the built-up area thus indicating urban encroachment. The implication of this was observed in thermal hotspots distribution and increase in the average LST over Ibadan as there was a decrease in vegetated surfaces that dampen the LST and an increase in the impervious surface revealed by the impervious and built-up index. In general, this study showed the capability of impervious surface indices in depicting the variations in land use land cover around a region, majorly urban sprawl. Furthermore, the evaluation of the spectral indices showed Urban Index (UI) as the best predictor LST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adeyeri OE, Okogbue EC (2014) Effect of landuse landcover on land surface temperature. In: Proceedings of Climate Change, and Sustainable Economic Development, pp 175–184. (ISBN 978-978-521-43-6-9)

  • Adeyeri OE, Akinsanola AA, Ishola KA (2017) Investigating Surface Urban Heat Island Characteristics over Abuja, Nigeria: relationship between land surface temperature and multiple vegetation indices. Soc Environ Remote Sens Appl. https://doi.org/10.1016/j.rsase.2017.06.005

    Google Scholar 

  • Agbola BS, Ajayi O, Taiwo OJ, Wahab BW (2012) The August 2011 Flood in Ibadan, Nigeria: anthropogenic causes and consequences. Int J Disaster Risk Sci 3(4):207–217. https://doi.org/10.1007/s13753-012-0021-3

    Article  Google Scholar 

  • Akintola FO (1994) Flooding phenomenon in Ibadan region. In: Filani MO (ed) Ibadan region. Rex Charles Publications & Connel Publications, Ibadan, pp 244–255

    Google Scholar 

  • Arnold CL, Gibbons CJ (1996) Impervious Surface coverage—the emergence of a key environmental indicator. J Am Plann Assoc 62(2):243–258. https://doi.org/10.1080/01944369608975688

    Article  Google Scholar 

  • As-syakur AR, Adnyana IWS, Arthana IW, Nuarsa IW (2012) Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens 4:2957–2970

    Article  Google Scholar 

  • Ayanlade A (2016) Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Model Earth Syst Environ 2:193. https://doi.org/10.1007/s40808-016-0238-z

    Article  Google Scholar 

  • Badlani B, Patel AN, Patel K, Kalubarme MH (2017) Urban growth monitoring using remote sensing and geo-informatics: case study of Gandhinagar, Gujarat State (India). Int J Geosci 8:563–576. https://doi.org/10.4236/ijg.2017.84030

    Article  Google Scholar 

  • Bailly JS, Arnaud M, Puech C (2007) Boosting: A classification method for remote sensing. Int J Remote Sens 28(7):1687–1710

    Article  Google Scholar 

  • Basarudin Z, Adnan NA (2014) Impervious surface detection and mapping via digital remotely sensed techniques. In: International Conference on Civil, Biological and Environmental Engineering (CBEE-2014) May 27–28, 2014 Istanbul (Turkey)

  • Bogoliubova A, Tymków P (2014) Accuracy assessment of automatic image processing for land cover classification of St. Petersburg protected area. Acta Scientiarum Polonorum Geodesia et Descriptio Terrarum 13:1–2

    Google Scholar 

  • Bokaie M, Zarkesh MK, Arasteh PD, Hosseini A (2016) Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2016.03.009

  • Bouzekri S, Lasbet AA, Lachehab A (2015) A New spectral index for extraction of built-up area using Landsat-8 data. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-015-0460-6

    Google Scholar 

  • Burns D, Vitvar T, McDonnell J, Hassett J, Duncan J, Kendall C (2005) Effects of suburban development on runoff generation in the Croton River basin, New York. J Hydrol 311:266–281

    Article  Google Scholar 

  • Carlson TN (1986) Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sens Rev 1:197–247

    Article  Google Scholar 

  • Chakraborty SD, Kant Y, Mitra D (2013) Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J Environ Manag 148:143–152. https://doi.org/10.1016/j.jenvman.2013.11.034

    Article  Google Scholar 

  • Chen YC, Chiu HW, Su YF, Wu YC, Chen KS (2017) Does urbanization increase diurnal land surface temperature evariation? Evidence and implications. Landsc Urban Plann 157:247–258. https://doi.org/10.1016/j.landurbplan.2016.06.014

    Article  Google Scholar 

  • Choudhari DK (2013) Uncertainty modeling for asynchronous time series data with incorporation of spatial variation for land use or land cover change. Thesis, Indian Institute of Remote Sensing, Dehradun

  • Congalton RG (1991) Remote sensing and geographic information system data integration: error sources and research issues. Photogramm Eng Remote Sens 57(6):677–687

    Google Scholar 

  • Corburn J (2009) Cities, climate change and urban heat island mitigation: Localising global environmental science. Urban Stud 46(2):413–427

    Article  Google Scholar 

  • Daramola MT, Eresanya EO (2017) Land surface temperature analysis over Akure. J Environ Earth Sci 7(5):97–105

    Google Scholar 

  • Ding H, Shi W (2013) Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City. Int J Remote Sens 34(15):5503–5517. https://doi.org/10.1080/01431161.2013.792966

    Article  Google Scholar 

  • Egbinola CN, Olaniran HD, Amanambu AC (2017) Flood management in cities of developing countries: the example of Ibadan, Nigeria. J Flood Risk Manag 10:546–554

    Article  Google Scholar 

  • Erdas Field Guide (1999) Erdas Inc. Atlanta

  • FAO (1995) Planning for sustainable use of land resources: towards a new approach. FAO, Rome

    Google Scholar 

  • Fu P, Weng Q (2016) A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens Environ 175:205–214

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Ige SO, Ajayi VO, Adeyeri OE, Oyekan KSA (2017) Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spat Inf Res 25(4):523–533. https://doi.org/10.1007/s41324-017-0118-2

    Article  Google Scholar 

  • Ishola KA, Okogbue EC, Adeyeri OE (2016a) A quantitative assessment of surface urban heat islands using satellite multitemporal data over Abeokuta, Nigeria. Int J Atmos Sci. https://doi.org/10.1155/2016/3170789

    Google Scholar 

  • Ishola KA, Okogbue EC, Adeyeri OE (2016b) Dynamics of surface urban biophysical compositions and its impact on land surface thermal field. Model Earth Syst Environ 2:208. https://doi.org/10.1007/s40808-016-0265-9

    Article  Google Scholar 

  • Jensen J (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112:3833–3845

    Article  Google Scholar 

  • Jibril MS, Liman HM (2014) Land use and land cover change detection in Ilorin, Nigeria, using satellite remote sensing. J Nat Sci Res 4(8):123–129

    Google Scholar 

  • Jieli C, Manchun L, Yongxue L, Chenglei S, Wei H (2010) Extract residential areas automatically by New Built-up Index. In: 18th International Conference on Geoinformatics, Beijing, pp 1–5 https://doi.org/10.1109/GEOINFORMATICS.2010.5567823

  • Kamdoum JN, Adepoju KA, Akinyede JO (2014) Assessment of impervious surface area and surface Urban Heat Island: a case study. Int J Ecol Econ Stat 35(4):48–64

    Google Scholar 

  • Kandel H, Melesse A, Whitman D (2016) An analysis on the urban heat island effect using radiosonde profiles and Landsat imagery with ground meteorological data in South Florida. Int J Remote Sens 37:2313–2337

    Article  Google Scholar 

  • Kawamura M, Jayamana S, Tsujiko Y (1996) Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. Int Arch Photogramm Remote Sens 31:321–326

    Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016) Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model Earth Syst Environ 2:127. https://doi.org/10.1007/s40808-016-0159-x

    Article  Google Scholar 

  • Khan A, Chatterjee S (2016) Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Model Earth Syst Environ 2:71. https://doi.org/10.1007/s40808-016-0119-5

    Article  Google Scholar 

  • Kim K-H, Pauleit S (2007) Landscape character, biodiversity and land use planning: the case of Kwangju City Region, South Korea. Land Use Policy 24:264–274

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • Legates DR, McCabe GJ (2012) A refined index of model performance: a rejoinder. Int J Climatol 33(4):1053–1056

    Article  Google Scholar 

  • Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465

    Article  Google Scholar 

  • Mallick J, Kant Y, Bharath BD (2008) Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J Ind Geophys Union 12(3):131–140

    Google Scholar 

  • Mmom PC, Nwagwu FW (2013) Analysis of landuse and landcover change around the City of Port Harcourt, Nigeria. Glob Adv Res J Geogr Reg Plan 2(5):076–086

    Google Scholar 

  • Musa J, Bako MM, Yunusa MB, Garba IK, Adamu M (2012) An assessment of the impact of urban growth on land surface temperature in FCT, Abuja using geospatial technique. Sokoto J Soc Sci 2:2

    Google Scholar 

  • Mushore TD, Odindi J, Dube T, Mutanga O (2017) Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city. Zimb Build Environ 122:397–410. https://doi.org/10.1016/j.buildenv.2017.06.033

    Article  Google Scholar 

  • Nie Q, Man W, Li Z, Huang Y (2016) Spatio-temporal impact of Urban impervious surface on land surface temperature in Shanghai, China. Can J Remote Sens 42(6):680–689. https://doi.org/10.1080/07038992.2016.1217484

    Article  Google Scholar 

  • Ogunjobi KO, Daramola MT, Akinsanola AA (2018) Estimation of surface energy fluxes from remotely sensed data over Akure, Nigeria. Spat Inf Res 26(1):77–89. https://doi.org/10.1007/s41324-017-0149-8

    Article  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306

    Article  Google Scholar 

  • Pal S, Ziaul SK (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci 20:125–145

    Google Scholar 

  • Qiao Z, Tian G, Xiao L (2013) Diurnal and seasonal impacts of urbanization on the urban thermal environment: a case study of Beijing using MODIS data. ISPRS J Photogramm Remote Sens 85:93–101

    Article  Google Scholar 

  • Ramachandra TV, Kumar U (2004) Geographic resources decision support system for land use, land cover dynamics analysis. In: Proceedings of the FOSS/GRASS Users Conference, Bangkok, 12–14 September 2004

  • Rizwan AM, Dennis LY, Chunho LIU (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20(1):120–128

    Article  Google Scholar 

  • Rose S, Peters NE (2001) Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach. Hydrol Process 15:1441–1457

    Article  Google Scholar 

  • Rosenzweig C, Solecki W, Slosberg R (2006) Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority

  • Sahana M, Ahmed R, Sajjad H (2016) Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model Earth Syst Environ 2:81. https://doi.org/10.1007/s40808-016-0135-5

    Article  Google Scholar 

  • Sannigrahi S, Rahmat S, Chakraborti S, Bhatt S, Jha S (2017) Changing dynamics of urban biophysical composition and its impact on urban heat island intensity and thermal characteristics: the case of Hyderabad City, India. Model Earth Syst Environ 3:647. https://doi.org/10.1007/s40808-017-0324-x

    Article  Google Scholar 

  • Sterling S, Ducharne A (2008) Comprehensive data set of global land cover change for land surface model applications. Global Biogeochem Cycles 22:GB3017. https://doi.org/10.1029/2007GB002959

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • United Nations (2012) World Urbanization Prospects: the 2011 revision, United Nations Department of Economic and Social Affairs, Population Division, New York

  • Wang Z, Gang C, Li X, Chen Y, Li J (2015) Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. Int J Remote Sens 36(4):1055–1069. https://doi.org/10.1080/01431161.2015.1007250

    Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  • Xu H (2008) A new index for delineating built-up land features in satellite imagery. Int J Remote Sens 29:4269–4276

    Article  Google Scholar 

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  • Zhang X, Zhong T, Feng X, Wang E (2009) Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int J Remote Sens 30(8):2105–2118. https://doi.org/10.1080/01431160802549252

    Article  Google Scholar 

  • Zhang Y, Odeh IOA, Ramadan E (2013) Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. Int J Remote Sens 34(1):168–189. https://doi.org/10.1080/01431161.2012.712227

    Article  Google Scholar 

Download references

Acknowledgements

The authors will like to appreciate the United States Geological Survey (USGS) and National Population Commission (NPC) for the provision of the dataset used in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojolaoluwa Toluwalase Daramola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daramola, M.T., Eresanya, E.O. & Ishola, K.A. Assessment of the thermal response of variations in land surface around an urban area. Model. Earth Syst. Environ. 4, 535–553 (2018). https://doi.org/10.1007/s40808-018-0463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0463-8

Keywords

Navigation