Skip to main content
Log in

Modelling of infiltration of sandy soil using gaussian process regression

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The aim of this paper to assesses the potential of machine learning approaches, i.e. multi-linear regression (MLR), support vector regression (SVR), Gaussian process (GP) regression of cumulative infiltration and compares their performances with three traditional models [Kostiakov model, US-Soil Conservation Service (SCS) model and Philip’s model]. Data set as many as 413 were obtained by conducting experiments in laboratory of NIT Kurukshetra. It is observed from the experiments that moisture content influences the cumulative infiltration of soil. Out of 413 data set 289 arbitrary selected were used for training the models, whereas remaining 124 were used for testing. Input data set consist of time, sand, rice husk ash, fly ash, suction head, bulk density and moisture content where as cumulative infiltration was considered as output. Two kernel function i.e. Pearson VII and radial based kernel function were used with both SVR and GP regression. The results after comparison suggests that the GP regression based approach works better than SVR, MLR, Kostiakov model, SCS model and Philip’s model approaches and it could be successfully used in prediction of cumulative infiltration data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Devices D, 2014. Mini disk infiltrometer user’s manual, version 9. Decagon Devices, Pullman

  • Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civil Eng 15(3):208–216

    Article  Google Scholar 

  • Elbisy MS (2015) Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE J Civ Eng 19(7):2307–2316. doi:10.1007/s12205-015-0210-x

    Article  Google Scholar 

  • Gill MK, Asefa T, Kemblowski MW, McKee M (2006) Soil moisture prediction using support vector machines. JAWRA J Am Water Resour Assoc 42(4):1033–1046

    Article  Google Scholar 

  • Green WH, Ampt G (1911) Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci 4:1–24

    Article  Google Scholar 

  • Holtan HN (1961) Concept for infiltration estimates in watershed engineering. Agricultural Research Service, U.S. Department of Agriculture

  • Horton RE (1941) An approach toward a physical interpretation of infiltration-capacity. Soil Sci Soc Am J 5(C):399–417

    Article  Google Scholar 

  • Jury WA, Gardner WR, Gardner WH (1991) Soil physics, 5th edn. Wiley, New York

    Google Scholar 

  • Karandish F, Šimůnek J (2016) A comparison of numerical and machine-learning modeling of soil water content with limited input data. J Hydrol 543:892–909. doi:10.1016/j.jhydrol.2016.11.007

    Article  Google Scholar 

  • Kostiakov AN (1932) On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. In: Trans. 6th Cong. International. Soil Science, Russian Part A, pp 17–21

  • Kuss M (2006) Gaussian process models for robust regression, classification, and reinforcement learning, PhD thesis, Technischen Universität Darmstadt

  • Lamorski K, Pachepsky Y, Sławiński C, Walczak RT (2008) Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci Soc Am J 72(5):1243–1247

    Article  Google Scholar 

  • Mirzaee S, Zolfaghari AA, Gorji M, Dyck M, Dashtaki SG (2014) Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Arch Agron Soil Sci 60(5):681–693. doi:10.1080/03650340.2013.823477

    Article  Google Scholar 

  • Mishra SK, Tyagi JV, Singh VP (2003) Comparison of infiltration models. Hydrol Process 17(13):2629–2652. doi:10.1002/hyp.1257

    Article  Google Scholar 

  • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Methods Geomech 30(10):983–996. doi:10.1002/nag.509

    Article  Google Scholar 

  • Pal M, Deswal S (2008) Modeling pile capacity using support vector machines and generalized regression neural network. J Geotech Geoenviron Eng 134(7):1021–1024. doi:10.1061/(ASCE)1090-0241(2008)134:7(1021)

    Article  Google Scholar 

  • Pal M, Singh NK, Tiwari NK, 2011. Support vector regression based modeling of pier scour using field data. Eng Appl Artif Intell 24(5):911–916. doi:10.1016/j.engappai.2010.11.002

  • Pedretti D, Barahona-Palomo M, Bolster D, Sanchez-Vila X, Fernàndez-Garcia D (2012) A quick and inexpensive method to quantify spatially variable infiltration capacity for artificial recharge ponds using photographic images. J Hydrol 430:118–126. doi:10.1016/j.jhydrol.2012.02.008

    Article  Google Scholar 

  • Philips JR (1957) The theory of infiltration: the infiltration equation and its solution. Soil Sci 83(5):345–357

    Article  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, Cambridge

    Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333

    Google Scholar 

  • Schuh WM, Bauder JW (1986) Effect of soil properties on hydraulic conductivity–moisture relationships. Soil Sci Soc Am J 50(4):848–855. doi:10.2136/sssaj1986.03615995005000040004x

    Article  Google Scholar 

  • Sihag P, Tiwari NK, Ranjan S (2017) Estimation and inter-comparison of infiltration models. Water Sci 31(1):34–43. doi:10.1016/j.wsj.2017.03.001

    Article  Google Scholar 

  • Singh VP, Yu FX (1990) Derivation of infiltration equation using systems approach. J Irrig Drain Eng. doi:10.1061/(ASCE)0733-9437(1990)116:6(837)

    Google Scholar 

  • Singh KK, Pal M, Ojha CSP, Singh VP (2008) Estimation of removal efficiency for settling basins using neural networks and support vector machines. J Hydrol Eng 13(3):146–155

    Article  Google Scholar 

  • Singh BK, Tiwari NK, Singh KK (2016) Support vector regression based modelling of trapping efficiency of silt ejector. J Indian Water Resour Soc 36(1):41–49

    Google Scholar 

  • Singh B, Sihag P, Singh K (2017) Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model Earth Syst Environ. doi:10.1007/s40808-017-0347-3

    Google Scholar 

  • Smola AJ (1996) Regression estimation with support vector learning machines. Master’s Thesis, Technische Universität München, Germany

  • Üstün B, Melssen WJ, Buydens LMC (2006) Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemometr Intell Lab Syst 81:29–40. doi:10.1016/j.chemolab.2005.09.003

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York

    Google Scholar 

  • Vereecken H, 1995. Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties. Geoderma, 65(1–2), 81–92. doi:10.1016/0016-7061(95)92543-X

    Article  Google Scholar 

  • Zolfaghari AA, Mirzaee S, Gorji M (2012) Comparison of different models for estimating cumulative infiltration. Int J Soil Sci 7(3):108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Sihag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihag, P., Tiwari, N.K. & Ranjan, S. Modelling of infiltration of sandy soil using gaussian process regression. Model. Earth Syst. Environ. 3, 1091–1100 (2017). https://doi.org/10.1007/s40808-017-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-017-0357-1

Keywords

Navigation