Skip to main content

Advertisement

Log in

Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil

  • Role of Classical Signaling Pathways in Stem Cell Maintenance (A Cardoso and N Carlesso, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the role of hypoxia and hypoxia-inducible factors (HIFs) in the regulation of stem cell biology, specifically focusing on maintenance, differentiation, and stress responses in the context of several stem cell systems. Stem cells for different lineages/tissues reside in distinct niches, and are exposed to diverse oxygen concentrations. Recent studies have revealed the importance of the hypoxia signaling pathway for stem cell functions.

Recent Findings

Hypoxia and HIFs contribute to maintenance of embryonic stem cells, generation of induced pluripotent stem cells, functionality of hematopoietic stem cells, and survival of leukemia stem cells. Harvest and collection of mouse bone marrow and human cord blood cells in ambient air results in fewer hematopoietic stem cells recovered due to the phenomenon of Extra PHysiologic Oxygen Shock/Stress (EPHOSS).

Summary

Oxygen is an important factor in the stem cell microenvironment. Hypoxia signaling and HIFs play important roles in modeling cellular metabolism in both stem cells and niches to regulate stem cell biology, and represent an additional dimension that allows stem cells to maintain an undifferentiated status and multilineage differentiation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interests, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development. 2013;140(2):255–65. https://doi.org/10.1242/dev.083139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46. https://doi.org/10.1038/nm.3647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015;16(3):239–53. https://doi.org/10.1016/j.stem.2015.02.019.

    Article  PubMed  CAS  Google Scholar 

  4. Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Cell Stem Cell. 2012;10(6):698–708. https://doi.org/10.1016/j.stem.2012.05.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jez M, Rozman P, Ivanovic Z, Bas T. Concise review: the role of oxygen in hematopoietic stem cell physiology. J Cell Physiol. 2015;230(9):1999–2005. https://doi.org/10.1002/jcp.24953.

    Article  PubMed  CAS  Google Scholar 

  6. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150–61. https://doi.org/10.1016/j.stem.2010.07.007.

    Article  PubMed  CAS  Google Scholar 

  7. Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol. 2001;128(3):263–76.

    Article  PubMed  CAS  Google Scholar 

  8. Dings J, Meixensberger J, Jager A, Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998;43(5):1082–95.

    Article  PubMed  CAS  Google Scholar 

  9. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.

    Article  PubMed  CAS  Google Scholar 

  10. Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99(1):394.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumoto A, Matsumoto S, Sowers AL, Koscielniak JW, Trigg NJ, Kuppusamy P, et al. Absolute oxygen tension (pO(2)) in murine fatty and muscle tissue as determined by EPR. Magn Reson Med. 2005;54(6):1530–5. https://doi.org/10.1002/mrm.20714.

    Article  PubMed  Google Scholar 

  12. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25. https://doi.org/10.2337/db08-1098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Eliasson P, Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol. 2010;222(1):17–22. https://doi.org/10.1002/jcp.21908.

    Article  PubMed  CAS  Google Scholar 

  14. Kwan M, Niinikoski J, Hunt TK. In vivo measurements of oxygen tension in the cornea, aqueous humor, and anterior lens of the open eye. Investig Ophthalmol. 1972;11(2):108–14.

    CAS  Google Scholar 

  15. Bath C, Yang S, Muttuvelu D, Fink T, Emmersen J, Vorum H, et al. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation. Stem Cell Res. 2013;10(3):349–60. https://doi.org/10.1016/j.scr.2013.01.004.

    Article  PubMed  CAS  Google Scholar 

  16. Busuttil RA, Rubio M, Dolle ME, Campisi J, Vijg J. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell. 2003;2(6):287–94.

    Article  PubMed  CAS  Google Scholar 

  17. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol. 2010;38(4):301–10 e2. https://doi.org/10.1016/j.exphem.2010.01.005.

    Article  PubMed  CAS  Google Scholar 

  18. Lekli I, Gurusamy N, Ray D, Tosaki A, Das DK. Redox regulation of stem cell mobilization. Can J Physiol Pharmacol. 2009;87(12):989–95. https://doi.org/10.1139/Y09-102.

    Article  PubMed  CAS  Google Scholar 

  19. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. https://doi.org/10.1016/j.molcel.2010.09.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402. https://doi.org/10.1016/j.molcel.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  21. Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 2004;36(2):189–204.

    Article  PubMed  CAS  Google Scholar 

  22. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.

    Article  PubMed  CAS  Google Scholar 

  23. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 2002;277(36):32405–8. https://doi.org/10.1074/jbc.C200328200.

    Article  PubMed  CAS  Google Scholar 

  25. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003;278(13):11032–40. https://doi.org/10.1074/jbc.M208681200.

    Article  PubMed  CAS  Google Scholar 

  26. Keith B, Adelman DM, Simon MC. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci U S A. 2001;98(12):6692–7. https://doi.org/10.1073/pnas.121494298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sekine H, Mimura J, Yamamoto M, Fujii-Kuriyama Y. Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses. J Biol Chem. 2006;281(49):37507–16. https://doi.org/10.1074/jbc.M606910200.

    Article  PubMed  CAS  Google Scholar 

  29. Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, et al. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol. 1996;16(4):1706–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8. https://doi.org/10.1126/science.1059817.

    Article  PubMed  CAS  Google Scholar 

  31. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72. https://doi.org/10.1126/science.1059796.

    Article  PubMed  CAS  Google Scholar 

  32. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54.

    Article  PubMed  CAS  Google Scholar 

  33. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009;284(25):16767–75. https://doi.org/10.1074/jbc.M901790200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011;117(23):e207–17. https://doi.org/10.1182/blood-2010-10-314427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A. 2002;99(8):5271–6. https://doi.org/10.1073/pnas.082121399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A. 2002;99(8):5367–72. https://doi.org/10.1073/pnas.082117899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999;274(46):32631–7.

    Article  PubMed  CAS  Google Scholar 

  38. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111(5):709–20.

    Article  PubMed  CAS  Google Scholar 

  39. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 2007;131(2):309–23. https://doi.org/10.1016/j.cell.2007.07.044.

    Article  PubMed  CAS  Google Scholar 

  40. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353–6. https://doi.org/10.1056/NEJMsr040330.

    Article  PubMed  CAS  Google Scholar 

  41. Wang F, Thirumangalathu S, Loeken MR. Establishment of new mouse embryonic stem cell lines is improved by physiological glucose and oxygen. Cloning Stem Cells. 2006;8(2):108–16. https://doi.org/10.1089/clo.2006.8.108.

    Article  PubMed  CAS  Google Scholar 

  42. Gibbons J, Hewitt E, Gardner DK. Effects of oxygen tension on the establishment and lactate dehydrogenase activity of murine embryonic stem cells. Cloning Stem Cells. 2006;8(2):117–22. https://doi.org/10.1089/clo.2006.8.117.

    Article  PubMed  CAS  Google Scholar 

  43. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102(13):4783–8. https://doi.org/10.1073/pnas.0501283102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–28. https://doi.org/10.1016/j.devcel.2005.09.010.

    Article  PubMed  CAS  Google Scholar 

  45. Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139(1):85–97. https://doi.org/10.1530/REP-09-0300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ji L, Liu YX, Yang C, Yue W, Shi SS, Bai CX, et al. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha. J Cell Physiol. 2009;221(1):54–66. https://doi.org/10.1002/jcp.21826.

    Article  PubMed  CAS  Google Scholar 

  47. Davy P, Allsopp R. Hypoxia: are stem cells in it for the long run? Cell Cycle. 2011;10(2):206–11. https://doi.org/10.4161/cc.10.2.14535.

    Article  PubMed  CAS  Google Scholar 

  48. Seewald MJ, Ellinghaus P, Kassner A, Stork I, Barg M, Niebrugge S, et al. Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiol Genomics. 2009;38(1):7–15. https://doi.org/10.1152/physiolgenomics.90287.2008.

    Article  PubMed  CAS  Google Scholar 

  49. Koay EJ, Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthr Cartil. 2008;16(12):1450–6. https://doi.org/10.1016/j.joca.2008.04.007.

    Article  CAS  Google Scholar 

  50. Mondragon-Teran P, Tostoes R, Mason C, Lye GJ, Veraitch FS. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells. Regen Med. 2013;8(2):171–82. https://doi.org/10.2217/rme.13.12.

    Article  PubMed  CAS  Google Scholar 

  51. Purpura KA, George SH, Dang SM, Choi K, Nagy A, Zandstra PW. Soluble Flt-1 regulates Flk-1 activation to control hematopoietic and endothelial development in an oxygen-responsive manner. Stem Cells. 2008;26(11):2832–42. https://doi.org/10.1634/stemcells.2008-0237.

    Article  PubMed  CAS  Google Scholar 

  52. Lee SW, Jeong HK, Lee JY, Yang J, Lee EJ, Kim SY, et al. Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Mol Med. 2012;4(9):924–38. https://doi.org/10.1002/emmm.201101107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. • Tsang KM, Hyun JS, Cheng KT, Vargas M, Mehta D, Ushio-Fukai M, et al. Embryonic stem cell differentiation to functional arterial endothelial cells through sequential activation of ETV2 and NOTCH1 signaling by HIF1alpha. Stem Cell Reports. 2017;9(3):796–806. https://doi.org/10.1016/j.stemcr.2017.07.001. This article provides evidence that HIF-1α induces mouse ESC commitment to arterial endothelia cells by activation of Etv2 and Notch1 signaling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sun X, Pang L, Shi M, Huang J, Wang Y. HIF2alpha induces cardiomyogenesis via Wnt/beta-catenin signaling in mouse embryonic stem cells. J Transl Med. 2015;13:88. https://doi.org/10.1186/s12967-015-0447-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523–35. https://doi.org/10.1038/ncb3264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  PubMed  CAS  Google Scholar 

  57. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009;5(3):237–41. https://doi.org/10.1016/j.stem.2009.08.001.

    Article  PubMed  CAS  Google Scholar 

  58. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71. https://doi.org/10.1016/j.cmet.2011.06.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22(1):168–77. https://doi.org/10.1038/cr.2011.177.

    Article  PubMed  CAS  Google Scholar 

  60. Lee MR, Mantel C, Lee SA, Moon SH, Broxmeyer HE. MiR-31/SDHA axis regulates reprogramming efficiency through mitochondrial metabolism. Stem Cell Reports. 2016;7(1):1–10. https://doi.org/10.1016/j.stemcr.2016.05.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. 2014;32(2):364–76. https://doi.org/10.1002/stem.1552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014;14(5):592–605. https://doi.org/10.1016/j.stem.2014.02.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Son MJ, Kwon Y, Son MY, Seol B, Choi HS, Ryu SW, et al. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 2015;22(12):1957–69. https://doi.org/10.1038/cdd.2015.43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res. 2007;17(9):746–58. https://doi.org/10.1038/cr.2007.69.

    Article  PubMed  CAS  Google Scholar 

  65. Ng AP, Alexander WS. Haematopoietic stem cells: past, present and future. Cell Death Discov. 2017;3:17002. https://doi.org/10.1038/cddiscovery.2017.2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44. https://doi.org/10.1016/j.cell.2008.01.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26. https://doi.org/10.1056/NEJMra052638.

    Article  PubMed  CAS  Google Scholar 

  68. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–90. https://doi.org/10.1038/nri.2017.53.

    Article  PubMed  CAS  Google Scholar 

  69. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. https://doi.org/10.1038/nature12984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. •• Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73. https://doi.org/10.1038/nature13034. This article demonstrates a very low oxygen tension in the BM of live mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43. https://doi.org/10.1038/ncb2730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402. https://doi.org/10.1016/j.stem.2010.06.020.

    Article  PubMed  CAS  Google Scholar 

  73. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49–61. https://doi.org/10.1016/j.stem.2012.10.011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Unnisa Z, Clark JP, Roychoudhury J, Thomas E, Tessarollo L, Copeland NG, et al. Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood. 2012;120(25):4973–81. https://doi.org/10.1182/blood-2012-06-435800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, DeBerardinis RJ, et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood. 2012;120(25):4963–72. https://doi.org/10.1182/blood-2012-05-432260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C, Gezer D, et al. Hif-2alpha is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood. 2013;122(10):1741–5. https://doi.org/10.1182/blood-2013-02-484923.

    Article  PubMed  CAS  Google Scholar 

  77. Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M, et al. HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2013;13(5):549–63. https://doi.org/10.1016/j.stem.2013.08.011.

    Article  PubMed  CAS  Google Scholar 

  78. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood. 2003;102(5):1634–40. https://doi.org/10.1182/blood-2003-02-0448.

    Article  PubMed  CAS  Google Scholar 

  79. Singh RP, Franke K, Kalucka J, Mamlouk S, Muschter A, Gembarska A, et al. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood. 2013;121(26):5158–66. https://doi.org/10.1182/blood-2012-12-471185.

    Article  PubMed  CAS  Google Scholar 

  80. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149(1):63–74. https://doi.org/10.1016/j.cell.2012.01.051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kranc KR, Schepers H, Rodrigues NP, Bamforth S, Villadsen E, Ferry H, et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell. 2009;5(6):659–65. https://doi.org/10.1016/j.stem.2009.11.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345–8. https://doi.org/10.1126/science.1191536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345(6203):1509–12. https://doi.org/10.1126/science.1256337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chaurasia P, Gajzer DC, Schaniel C, D'Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest. 2014;124(6):2378–95. https://doi.org/10.1172/JCI70313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Huang X, Lee MR, Cooper S, Hangoc G, Hong KS, Chung HM, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. Leukemia. 2016;30(1):144–53. https://doi.org/10.1038/leu.2015.189.

    Article  PubMed  CAS  Google Scholar 

  86. Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE. Antagonism of PPAR-gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 2018. doi:https://doi.org/10.1038/nm.4477.

  87. • Guo B, Huang X, Cooper S, Broxmeyer HE. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med. 2017;23(4):424–8. https://doi.org/10.1038/nm.4298. This article provides evidence that glucocorticoid treatment enhances human cord blood HSC homing and engraftment by epigentic regulation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113(22):5444–55. https://doi.org/10.1182/blood-2009-01-201335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild heat treatment primes human CD34(+) cord blood cells for migration toward SDF-1alpha and enhances engraftment in an NSG mouse model. Stem Cells. 2015;33(6):1975–84. https://doi.org/10.1002/stem.1988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Speth JM, Hoggatt J, Singh P, Pelus LM. Pharmacologic increase in HIF1alpha enhances hematopoietic stem and progenitor homing and engraftment. Blood. 2014;123(2):203–7. https://doi.org/10.1182/blood-2013-07-516336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Forristal CE, Nowlan B, Jacobsen RN, Barbier V, Walkinshaw G, Walkley CR, et al. HIF-1alpha is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1alpha. Leukemia. 2015;29(6):1366–78. https://doi.org/10.1038/leu.2015.8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nishino T, Miyaji K, Ishiwata N, Arai K, Yui M, Asai Y, et al. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp Hematol. 2009;37(11):1364–77 e4. https://doi.org/10.1016/j.exphem.2009.09.001.

    Article  PubMed  CAS  Google Scholar 

  93. •• Mantel CR, O'Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161(7):1553–65. https://doi.org/10.1016/j.cell.2015.04.054. This article demonstrates that hypoxia collection and harvest increases HSC numbers by mitigating EPHOSS mediated by a p53-CypD-MPTP axis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Broxmeyer HE, O'Leary HA, Huang X, Mantel C. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr Opin Hematol. 2015;22(4):273–8. https://doi.org/10.1097/MOH.0000000000000144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. https://doi.org/10.1016/j.stem.2014.02.006.

    Article  PubMed  CAS  Google Scholar 

  96. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. https://doi.org/10.1038/367645a0.

    Article  PubMed  CAS  Google Scholar 

  97. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. https://doi.org/10.1038/nature05236.

    Article  PubMed  CAS  Google Scholar 

  99. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. https://doi.org/10.1158/0008-5472.CAN-06-2030.

    Article  PubMed  CAS  Google Scholar 

  100. Dawood S, Austin L, Cristofanilli M. Cancer stem cells: implications for cancer therapy. Oncology (Williston Park). 2014;28(12):1101–7. 10

    Google Scholar 

  101. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22. https://doi.org/10.1038/nrc3183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732–44. https://doi.org/10.1016/j.cell.2011.03.054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465–72. https://doi.org/10.1016/j.cell.2007.04.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Qing G, Simon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev. 2009;19(1):60–6. https://doi.org/10.1016/j.gde.2008.12.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Vyas P. Targeting HIF function: the debate continues. Blood. 2014;124(24):3510–1. https://doi.org/10.1182/blood-2014-10-605055.

    Article  PubMed  CAS  Google Scholar 

  106. Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G, et al. Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood. 2014;124(7):1127–35. https://doi.org/10.1182/blood-2013-12-544221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M, et al. HIF factors cooperate with PML-RARalpha to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med. 2014;6(5):640–50. https://doi.org/10.1002/emmm.201303065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J. HIF-1alpha can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood. 2014;124(24):3597–607. https://doi.org/10.1182/blood-2014-04-567065.

    Article  PubMed  CAS  Google Scholar 

  109. Vukovic M, Guitart AV, Sepulveda C, Villacreces A, O'Duibhir E, Panagopoulou TI, et al. Hif-1alpha and Hif-2alpha synergize to suppress AML development but are dispensable for disease maintenance. J Exp Med. 2015;212(13):2223–34. https://doi.org/10.1084/jem.20150452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhang H, Li H, Xi HS, Li S. HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119(11):2595–607. https://doi.org/10.1182/blood-2011-10-387381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CT, et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood. 2014;123(21):3316–26. https://doi.org/10.1182/blood-2013-07-511907.

    Article  PubMed  CAS  Google Scholar 

  112. Tanturli M, Giuntoli S, Barbetti V, Rovida E, Dello SP. Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia. PLoS One. 2011;6(2):e17008. https://doi.org/10.1371/journal.pone.0017008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, et al. Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood. 2015;125(25):3917–27. https://doi.org/10.1182/blood-2014-10-609370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank other members in the Broxmeyer laboratory for helpful discussion and assistance. This work is supported by US Public Health Service Grants from the NIH to HEB: (R01 HL112669, R01 HL056416, U54 DK106846). AA is supported by NIH 5T32DK007519-32 to HEB, and TT is supported by NIH T32DK064466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Huang.

Ethics declarations

Conflict of Interest

Xinxin Huang, Thao Trinh, and Arafat Aljoufi declare that they have no conflict of interest. Dr. Broxmeyer is a member of the Medical Scientific Advisory Board of CordUse, a cord blood banking company based in Orlando, Florida, but he reports no financial support.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Role of Classical Signaling Pathways in Stem Cell Maintenance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Trinh, T., Aljoufi, A. et al. Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil. Curr Stem Cell Rep 4, 149–157 (2018). https://doi.org/10.1007/s40778-018-0127-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0127-7

Keywords

Navigation