Skip to main content

Advertisement

Log in

Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease

  • Artificial Tissues (A Atala and JG Hunsberger, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The modeling of biological processes in vitro provides an important tool to better understand mechanisms of development and disease, allowing for the rapid testing of therapeutics. However, a critical constraint in traditional monolayer culture systems is the absence of the multicellularity, spatial organization, and overall microenvironment present in vivo. This limitation has resulted in numerous therapeutics showing efficacy in vitro, but failing in patient trials. In this review, we discuss several organoid and “organ-on-a-chip” systems with particular regard to the modeling of neurological diseases and gastrointestinal disorders.

Recent Findings

Recently, the in vitro generation of multicellular organ-like structures, coined organoids, has allowed the modeling of human development, tissue architecture, and disease with human-specific pathophysiology. Additionally, microfluidic “organ-on-a-chip” technologies add another level of physiological mimicry by allowing biological mediums to be shuttled through 3D cultures.

Summary

Organoids and organ chips are rapidly evolving in vitro platforms which hold great promise for the modeling of development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rosenthal N, Brown S. The mouse ascending: perspectives for human-disease models. Nat Cell Biol. 2007;9(9):993–9. doi:10.1038/ncb437.

    Article  CAS  PubMed  Google Scholar 

  2. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–67. doi:10.1038/nrg2091.

    Article  CAS  PubMed  Google Scholar 

  3. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–71. doi:10.1016/j.bcp.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  4. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010;16(11):1210–4. doi:10.1038/nm.2224.

    Article  CAS  PubMed  Google Scholar 

  5. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. doi:10.1371/journal.pmed.1000245.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Meer PJ, Kooijman M, Gispen-de Wied CC, Moors EH, Schellekens H. The ability of animal studies to detect serious post marketing adverse events is limited. Regul Toxicol Pharmacol. 2012;64(3):345–9. doi:10.1016/j.yrtph.2012.09.002.

    Article  PubMed  Google Scholar 

  7. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170–82. doi:10.1038/nrm.2015.27.

    Article  CAS  PubMed  Google Scholar 

  8. Soldner F, Jaenisch R. Medicine. iPSC disease modeling. Science (New York, NY). 2012;338(6111):1155–6. doi:10.1126/science.1227682.

    Article  Google Scholar 

  9. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. doi:10.1038/nri2017.

    Article  CAS  PubMed  Google Scholar 

  10. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. doi:10.1038/nri3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12(3):342–53. doi:10.1016/j.stem.2012.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252–64. doi:10.1016/j.stem.2012.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Windrem MS, Schanz SJ, Morrow C, Munir J, Chandler-Militello D, Wang S, et al. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2014;34(48):16153–61. doi:10.1523/jneurosci.1510-14.2014.

    Article  CAS  Google Scholar 

  14. Akhtar AA, Breunig JJ. Lost highway(s): barriers to postnatal cortical neurogenesis and implications for brain repair. Front Cell Neurosci. 2015;9:216. doi:10.3389/fncel.2015.00216.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rakic P. Limits of neurogenesis in primates. Science (New York, NY). 1985;227(4690):1054–6.

    Article  CAS  Google Scholar 

  16. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142(5):787–99. doi:10.1016/j.cell.2010.07.039.

    Article  CAS  PubMed  Google Scholar 

  17. Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180(6):2417–26. doi:10.1016/j.ajpath.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  18. Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110(12):4557–62. doi:10.1073/pnas.1222902110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3(5):519–32. doi:10.1016/j.stem.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  20. Eiraku M, Sasai Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol. 2012;22(5):768–77. doi:10.1016/j.conb.2012.02.005.

    Article  CAS  PubMed  Google Scholar 

  21. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97. doi:10.1016/j.cell.2016.05.082.

    Article  CAS  PubMed  Google Scholar 

  22. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54. doi:10.1038/ncb3312.

    Article  PubMed  CAS  Google Scholar 

  23. Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113–25. doi:10.1242/dev.118570.

    Article  CAS  PubMed  Google Scholar 

  24. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251–5. doi:10.1038/nature14966. http://www.nature.com/nature/journal/v525/n7568/abs/nature14966.html#supplementary-information

    Article  PubMed  CAS  Google Scholar 

  25. •• Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–54. doi:10.1016/j.cell.2016.04.032. This group created a scalable mini-bioreactor system and protocol for brain region specific organoids, later applying it to show the effect of Zika virus in killing neural progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564–8. doi:10.1038/nature15695.

    Article  CAS  PubMed  Google Scholar 

  27. Qu Y, Han B, Gao B, Bose S, Gong Y, Wawrowsky K, et al. Differentiation of human induced pluripotent stem cells to mammary-like organoids. Stem cell reports. 2017; doi:10.1016/j.stemcr.2016.12.023.

    PubMed  PubMed Central  Google Scholar 

  28. Barrett R, Ornelas L, Yeager N, Mandefro B, Sahabian A, Lenaeus L, et al. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl Med. 2014;3(12):1429–34. doi:10.5966/sctm.2014-0121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breunig JJ, Haydar TF, Rakic P. Neural stem cells: historical perspective and future prospects. Neuron. 2011;70(4):614–25. doi:10.1016/j.neuron.2011.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rakic P, Ayoub AE, Breunig JJ, Dominguez MH. Decision by division: making cortical maps. Trends Neurosci. 2009;32(5):291–301. doi:10.1016/j.tins.2009.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danjo T, Eiraku M, Muguruma K, Watanabe K, Kawada M, Yanagawa Y, et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci Off J Soc Neurosci. 2011;31(5):1919–33. doi:10.1523/jneurosci.5128-10.2011.

    Article  CAS  Google Scholar 

  32. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; doi:10.1038/nature12517.

    PubMed  PubMed Central  Google Scholar 

  33. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–40. doi:10.1038/nprot.2014.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bautch VL, James JM. Neurovascular development: the beginning of a beautiful friendship. Cell Adhes Migr. 2009;3(2):199–204.

    Article  Google Scholar 

  35. Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci. 2010;33:379–408. doi:10.1146/annurev-neuro-060909-152829.

    Article  CAS  PubMed  Google Scholar 

  36. Rakic P. Specification of cerebral cortical areas. Science (New York, NY). 1988;241(4862):170–6.

    Article  CAS  Google Scholar 

  37. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10(10):724–35. doi:10.1038/nrn2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18–36. doi:10.1016/j.cell.2011.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science (New York, NY). 1974;183(4123):425–7.

    Article  CAS  Google Scholar 

  40. Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–8. doi:10.1038/nmeth.3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Goke J, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 2016;19(2):248–57. doi:10.1016/j.stem.2016.07.005.

    Article  CAS  PubMed  Google Scholar 

  42. • Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell. 2016; doi:10.1016/j.stem.2016.11.017. Jaenisch and colleagues demonstrate a PTEN-mediated cortical expansion/folding phenotype in early neural development that was not observed in previous mouse models

    Google Scholar 

  43. Schwartz MP, Hou Z, Propson NE, Zhang J, Engstrom CJ, Santos Costa V, et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U S A. 2015;112(40):12516–21. doi:10.1073/pnas.1516645112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown JA, Codreanu SG, Shi M, Sherrod SD, Markov DA, Neely MD, et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J Neuroinflammation. 2016;13(1):306. doi:10.1186/s12974-016-0760-y.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Faria NR, Azevedo Rdo S, Kraemer MU, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science (New York, NY). 2016;352(6283):345–9. doi:10.1126/science.aaf5036.

    Article  CAS  Google Scholar 

  46. Xu M, Lee EM, Wen Z, Cheng Y, Huang W-K, Qian X, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22(10):1101–7. doi:10.1038/nm.4184. http://www.nature.com/nm/journal/v22/n10/abs/nm.4184.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  47. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42(4):318–21. doi:10.1136/jmg.2004.024646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marchese M, Conti V, Valvo G, Moro F, Muratori F, Tancredi R, et al. Autism-epilepsy phenotype with macrocephaly suggests PTEN, but not GLIALCAM, genetic screening. BMC medical genetics. 2014;15:26. doi:10.1186/1471-2350-15-26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50(3):377–88. doi:10.1016/j.neuron.2006.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science (New York, NY). 2001;294(5549):2186–9. doi:10.1126/science.1065518.

    Article  CAS  Google Scholar 

  51. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–70. doi:10.1038/nrneurol.2014.184.

    Article  PubMed  Google Scholar 

  52. Thomsen GM, Gowing G, Latter J, Chen M, Vit JP, Staggenborg K, et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2014;34(47):15587–600. doi:10.1523/jneurosci.2037-14.2014.

    Article  CAS  Google Scholar 

  53. • Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149. doi:10.1126/scitranslmed.3007529. Careful analysis by Sadegh and Macklis reveals that monolayer cultures of neurons fail to appropriately mature past embryonic stages and display imprecise differentiation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sadegh C, Macklis JD. Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocortical-like neurons stalled at a stage equivalent to midcorticogenesis. J Comp Neurol. 2014;522(12):2691–706. doi:10.1002/cne.23576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Ho R, Sances S, Gowing G, Amoroso MW, O'Rourke JG, Sahabian A, et al. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat Neurosci. 2016;19(9):1256–67. doi:10.1038/nn.4345. Using transcriptome analysis, this group demonstrates the immature nature of current in vitro models of neurodegenerative disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Akhtar AA, Molina J, Dutra-Clarke M, Kim GB, Levy R, Schreiber-Stainthorp W, et al. A transposon-mediated system for flexible control of transgene expression in stem and progenitor-derived lineages. Stem cell reports. 2015;4(3):323–31. doi:10.1016/j.stemcr.2015.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM, Sakariassen PO, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncology. 2012;14(8):979–93. doi:10.1093/neuonc/nos135.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Breunig JJ, Levy R, Antonuk CD, Molina J, Dutra-Clarke M, Park H, et al. Ets factors regulate neural stem cell depletion and gliogenesis in Ras Pathway Glioma. Cell Rep. 2015; doi:10.1016/j.celrep.2015.06.012.

    PubMed  Google Scholar 

  59. Kim GB, Dutra-Clarke M, Levy R, Park H, Sabet S, Molina J et al. Generating in vivo somatic mouse mosaics with locus-specific, stably-integrated transgenic elements. bioRxiv. 2016.

  60. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31. doi:10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  61. Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465–77. doi:10.1158/0008-5472.can-15-2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016;22(11):1220–8. doi:10.1038/nm.4214.

    Article  CAS  PubMed  Google Scholar 

  63. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd.2003.12.016.

    Article  CAS  PubMed  Google Scholar 

  64. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–92. doi:10.1038/nrd.2015.21.

    Article  CAS  PubMed  Google Scholar 

  65. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85. doi:10.1124/pr.57.2.4.

    Article  CAS  PubMed  Google Scholar 

  66. Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6(8):591–602.

    Article  PubMed  CAS  Google Scholar 

  67. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation. 2015;20(2):107–26. doi:10.1177/2211068214561025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72. doi:10.1038/nbt.2989.

    Article  CAS  PubMed  Google Scholar 

  70. van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers. 2016;4(1):e1142493. doi:10.1080/21688370.2016.1142493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 2013;15(1):145–50. doi:10.1007/s10544-012-9699-7.

    Article  CAS  PubMed  Google Scholar 

  72. Ye M, Sanchez HM, Hultz M, Yang Z, Bogorad M, Wong AD, et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Scientific reports. 2014;4:4681. doi:10.1038/srep04681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xu H, Li Z, Yu Y, Sizdahkhani S, Ho WS, Yin F, et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Scientific reports. 2016;6:36670. doi:10.1038/srep36670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific reports. 2014;4:4160. doi:10.1038/srep04160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114(1):184–94. doi:10.1002/bit.26045.

    Article  CAS  PubMed  Google Scholar 

  76. Svendsen CN. Back to the future: how human induced pluripotent stem cells will transform regenerative medicine. Hum Mol Genet. 2013;22(R1):R32–R8. doi:10.1093/hmg/ddt379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho R, Sances S, Gowing G, Amoroso MW, O'Rourke JG, Sahabian A, et al. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat Neurosci. 2016;19(9):1256–67. doi:10.1038/nn.4345. http://www.nature.com/neuro/journal/v19/n9/abs/nn.4345.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19(4):542–53. doi:10.1038/nn.4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53. doi:10.1038/nri3608.

    Article  CAS  PubMed  Google Scholar 

  80. Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1165–79. doi:10.3748/wjg.v20.i5.1165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Heyman M, Abed J, Lebreton C, Cerf-Bensussan N. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012;61(9):1355–64. doi:10.1136/gutjnl-2011-300327.

    Article  CAS  PubMed  Google Scholar 

  82. De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med. 2013;3(9):a009753. doi:10.1101/cshperspect.a009753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nalle SC, Turner JR. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol. 2015;8(4):720–30. doi:10.1038/mi.2015.40.

    Article  CAS  PubMed  Google Scholar 

  84. Strater J, Wedding U, Barth TF, Koretz K, Elsing C, Moller P. Rapid onset of apoptosis in vitro follows disruption of beta 1-integrin/matrix interactions in human colonic crypt cells. Gastroenterology. 1996;110(6):1776–84.

    Article  CAS  PubMed  Google Scholar 

  85. Grossmann J, Mohr S, Lapentina EG, Fiocchi C, Levine AD. Sequential and rapid activation of select caspases during apoptosis of normal intestinal epithelial cells. Am J Phys. 1998;274(6 Pt 1):G1117–24.

    CAS  Google Scholar 

  86. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. doi:10.1007/s10565-005-0085-6.

    Article  CAS  PubMed  Google Scholar 

  87. Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4(4):395–411. doi:10.1517/17425255.4.4.395.

    Article  CAS  PubMed  Google Scholar 

  88. •• Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. doi:10.1038/nature07935. This study showed for the first time that intestinal epithelial tissue could be cultured for extended periods in vitro.

    Article  CAS  PubMed  Google Scholar 

  89. • Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72. doi:10.1053/j.gastro.2011.07.050. This study shows that human epithelial tissue can be cultured from biopsy tissues.

    Article  CAS  PubMed  Google Scholar 

  90. • VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut. 2015;64(6):911–20. doi:10.1136/gutjnl-2013-306651. This study shows that human epithelial tissue can be cultured from biopsy tissues.

    Article  CAS  PubMed  Google Scholar 

  91. •• Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105–9. doi:10.1038/nature09691. This study showed for the first time that intestinal epithelial tissue could be generated from inuduced pluripotent cells.

    Article  PubMed  CAS  Google Scholar 

  92. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59. doi:10.1007/s00018-012-1070-x.

    Article  CAS  PubMed  Google Scholar 

  93. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, et al. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun. 2015;83(7):2926–34. doi:10.1128/IAI.00161-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA, Knipping K, et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antivir Res. 2015;123:120–31. doi:10.1016/j.antiviral.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  95. Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M, Young VB, et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 2015;83(1):138–45. doi:10.1128/IAI.02561-14.

    Article  PubMed  CAS  Google Scholar 

  96. • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–74. doi:10.1039/c2lc40074j. This group demonstrates that Caco2 cells can be co-cultured with bacteria for extended periods in a small microfludic device.

    Article  CAS  PubMed  Google Scholar 

  97. Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A. 2016;113(1):E7–15. doi:10.1073/pnas.1522193112.

    Article  CAS  PubMed  Google Scholar 

  98. van Wilgenburg B, Browne C, Vowles J, Cowley SA. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS One. 2013;8(8):e71098. doi:10.1371/journal.pone.0071098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Senju S, Haruta M, Matsumura K, Matsunaga Y, Fukushima S, Ikeda T, et al. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther. 2011;18(9):874–83. doi:10.1038/gt.2011.22.

    Article  CAS  PubMed  Google Scholar 

  100. Morishima T, Watanabe K, Niwa A, Fujino H, Matsubara H, Adachi S, et al. Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol. 2011;226(5):1283–91. doi:10.1002/jcp.22456.

    Article  CAS  PubMed  Google Scholar 

  101. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16(6):712–24. doi:10.1016/j.stem.2015.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi:10.1186/s13059-016-0881-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97. doi:10.1038/nrg3868.

    Article  CAS  PubMed  Google Scholar 

  104. Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22(10):1101–7. doi:10.1038/nm.4184.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Saxon for critical review of the manuscript and acknowledge support from the Board of Governors RMI of Cedars-Sinai. Joshua J. Breunig, PhD, was supported by a Research Scholar Grant, RSG-16-217-01-TBG, from the American Cancer Society and by NIH grant R33 CA202900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Breunig.

Ethics declarations

Conflict of Interest

Aslam Abbasi Akhtar and Joshua J. Breunig declare that they have no conflict of interest.

Samuel Sances has a pending patent PCT/US16/57724 on Blood Brain Barrier on Chip titled “Microfluidic Model of the Blood Brain Barrier.”

Robert Barrett has a pending patent PCT/US2017/016098 titled “Systems And Methods For Growth Of Intestinal Cells In Microfluidic Devices.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Artificial Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, A.A., Sances, S., Barrett, R. et al. Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease. Curr Stem Cell Rep 3, 98–111 (2017). https://doi.org/10.1007/s40778-017-0080-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0080-x

Keywords

Navigation