Skip to main content
Log in

Bayesian Estimation of Transmuted Pareto Distribution for Complete and Censored Data

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Transmuted distributions belong to the skewed family of distributions which are more flexible and versatile than the simple probability distributions. The focus of this article is the Bayesian estimation of three-parameter Transmuted Pareto distribution. In particular, we assumed noninformative and informative priors to obtain the posterior distributions. Bayesian point estimators and the associated precision measures are investigated under squared error loss function, precautionary loss function, and quadratic loss function. In addition to this, the Bayesian credible intervals are also computed under different priors. A simulation study using a Markov Chain Monte Carlo algorithm assuming uncensored and censored data in terms of different sample sizes and censoring rates is also a part of this study. The performance of Bayesian point estimators is assessed in term of posterior risks. Finally, two real life data sets of cardiovascular disease patients and of exceedances of Wheaton River flood are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burroughs SM, Tebbens SF (2001) Upper-truncated power law distributions. Fractals 9:209–222

    Article  Google Scholar 

  2. Chhetri SB, Long H, Aryal G (2017) The beta transmuted Pareto distribution: theory and applications. J Stat Appl Prob 6(2):243–258

    Article  Google Scholar 

  3. Newman MEJ (2007) Power laws, Pareto distributions and Zapf’s law. J Contemp Phys 46(5):323–351

    Article  Google Scholar 

  4. Abdel-All NH, Mahmoud MAW, Abd-Ellah HN (2003) Geometrical properties of Pareto distribution. App Math Comput 145:321–339

    Article  Google Scholar 

  5. Ismail S (2004) A simple estimator for the shape parameter of the Pareto distribution with economics and medical applications. J Appl Stat 31(1):3–13

    Article  Google Scholar 

  6. Shaw WT, Buckley IRC (2009) The alchemy of probability distributions: beyond Gram–Charlier expansions and a skew-kurtotic normal distribution from a rank transmutation map. arXiv preprint arXiv: 0901.0434v1 [q-fin.ST]

  7. Aryal GR, Tsokos CP (2009) On the transmuted extreme value distribution with application. Nonlinear Ana Theory Methods Appl 71:1401–1407

    Article  Google Scholar 

  8. Fatima A, Roohi A (2015) Transmuted exponentiated Pareto-I distribution. Pak J Stat 32(1):63–80

    Google Scholar 

  9. Mahmoud MAW, Ghazal MGM, Radwan HMM (2020) Bayesian estimation and optimal censoring of inverted generalized linear exponential distribution using progressive first failure censoring. Ann Data Sci. https://doi.org/10.1007/s40745-020-00259-z

    Article  Google Scholar 

  10. Merovci F, Puka L (2014) Transmuted Pareto distribution. Prob Stat Forum 7:1–11

    Google Scholar 

  11. Rahman MM, Al-Zahrani B, Shahbaz MQ (2020) Cubic transmuted Pareto distribution. Ann Data Sci 7:91–108

    Article  Google Scholar 

  12. Al-Kadim KA, Mohammed MH (2017) The cubic tansmuted Weibull distribution. J Babylon Univ Pure Appl Sci 3(25):862–876

    Google Scholar 

  13. Olson D, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York

    Google Scholar 

  14. Shi Y (2001) Multiple criteria multiple constraint-level linear programming: concepts, techniques and applications. World Scientific Publishing, Singapore

    Book  Google Scholar 

  15. Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based Data Mining: theory and applications. Springer, London

    Book  Google Scholar 

  16. Shi Y (2014) Big data: history, current status, and challenges going forward, The Bridge. Natl Acad Eng USA 44(4):6–11

    Google Scholar 

  17. Xu Z, Shi Y (2015) Exploring big data analysis: fundamental scientific problems. Ann Data Sci 2:363–372

    Article  Google Scholar 

  18. Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data. Springer, New York

    Book  Google Scholar 

  19. Franz J (2006) Posterior distribution and loss functions for parameter estimation in Weibull processes. Econ Qual Control 21(1):31–42

    Article  Google Scholar 

  20. Ali S, Aslam M, Kazmi SMA (2013) Choice of suitable informative prior for the scale parameter of the mixture of Laplace distribution. Electron J Appl Stat Anal 6:32–56

    Google Scholar 

  21. Punt AE, Butterworth DS (2000) Why do Bayesian and maximum likelihood assessments of the Bering–Chukchi–Beaufort Seas stock of bowhead whales differ? J Cetacean ResManage 2:125–133

    Google Scholar 

  22. Punt AE, Walker TI (1998) Stock assessment and risk analysis for the school shark Galeorhinus galeus (Linnaeus) off southern Australia. Mar Freshw Res 49:719–731

    Article  Google Scholar 

  23. Doostparast M, Akbari MG, Balakrishnan N (2011) Bayesian analysis for the two-parameter Pareto distribution based on record values and times. J Stat Comput Sim 81(11):1393–1403

    Article  Google Scholar 

  24. Arnold BC, Press SJ (1989) Bayesian estimation and prediction for Pareto data. J Am Stat Asocs 84:1079–1084

    Article  Google Scholar 

  25. Robert CP (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation, 2nd edn. Springer, New York

    Google Scholar 

  26. Ali S, Aslam M, Nasir A, Kazmi SMA (2012) Scale parameter estimation of the Laplace model using different asymmetric loss functions. Int J Stat Prob 1(1):105–127

    Article  Google Scholar 

  27. Norstrom JG (1996) The use of precautionary loss functions in risk analysis. IEEE Trans Reliab 45(1):400–403

    Article  Google Scholar 

  28. Ali S, Aslam M, Kazmi SMA (2011) Improved informative prior for the mixture of Laplace distribution under different loss functions. J Reliab Stat Stud 4:57–82

    Google Scholar 

  29. Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Stat Math 16:155–160

    Article  Google Scholar 

  30. Ali S (2015) On the Bayesian estimation of the weighted Lindley distribution. J Stat Comput Simul 85(5):855–880

    Article  Google Scholar 

  31. Yousaf R, Aslam M, Ali S (2019) Bayesian estimation of the transmuted Frèchet distribution. Iran J Sci Technol A 43:1629–1641

    Article  Google Scholar 

  32. Eberlya LE, Casella G (2003) Estimating Bayesian credible intervals. J Stat Plan Infer 112:115–132

    Article  Google Scholar 

  33. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. http://www.R-project.org/

  34. Choulakian V, Stephens MA (2001) Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 43(4):478–484

    Article  Google Scholar 

  35. Yousaf F, Ali S, Shah I (2019) Statistical inference for the Chen distribution based on upper record values. Ann Data Sci 6:831–851

    Article  Google Scholar 

  36. Yousaf R, Ali S, Aslam M (2019) On the Bayesian analysis of two-component mixture of transmuted Weibull distribution. Sci Iran. https://doi.org/10.24200/SCI.2019.51090.1997

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and three anonymous reviewers for their constructive comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Real Data Sets used in Sect. 5 are given Tables 12 and 13.

Table 12 Real life data of the TPD recoding Survival Time (in days) of Patients
Table 13 Exceedances of wheaton river flood data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Yousaf, R. & Ali, S. Bayesian Estimation of Transmuted Pareto Distribution for Complete and Censored Data. Ann. Data. Sci. 7, 663–695 (2020). https://doi.org/10.1007/s40745-020-00310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00310-z

Keywords

Navigation