Skip to main content
Log in

Phytochemical Characterization, Antioxidant Proprieties and Electrochemical Investigations of Methanolic Extract of Rubia t.L. Roots for LC-Steel Corrosion Protection in 1 M HCl Medium

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The current study aims to valorize the roots of a medicinal plant of the family Rabeacea called Rubia tinctorum L. (Rubia t.L.), by phytochemical analyses, and by pointing out the antioxidant and corrosion inhibitory proprieties of the soxhlet extract using different solvent. The content of polyphenols and flavonoids was investigated using colorimetric assays Folin-Ciocalteu, which showed a higher TPC (total phenolic contents) in methanolic extract (129.40 ± 1.78 mg GAE/g), while the flavonoid fraction represents the minor proportion with 63.32 ± 1.41 mg GAE/g. The optimized extract was characterized by UV–vis spectrophotometric analysis and FTIR spectrometric analysis. The antioxidant activities were evaluated using TAC (total antioxidant capacity), DPPH (diphenyl picryl-hydrazyl), free radical scavenging and FRAP method; the obtained results are more significant than those of BHT, ascorbic acid and vitamin E, used as standard. The soxhlet methanolic extract of Rubia tinctorum L. roots was also used as green corrosion inhibitor for low carbon steel (LC-steel) in acid environment (1 M HCl), using the mass loss method and both techniques PDP (potentiodynamic polarization) and EIS (electrochemical impedance spectroscopy) for the electrochemical tests. PDP results reveal that the Rubia t.L. extract functions as a mixed inhibitor. Nyquist plots show that the resistance of charge transfer increases by increasing the inhibitor concentration, whereas the capacity of the double layer decreases. The adsorption of the extract follows the Langmuir isothermal model. The inhibition efficiencies found in the presence of the tested extract through the three electrochemical methods are consistent and are around the value of 95% at the optimum concentration (1 g/l) and a temperature of 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Verma DK, Al Fantazi A, Verma C, Khan F, Asatkar A, Hussain CM, Ebenso EE (2020) Experimental and computational studies on hydroxamic acids as environmental friendly chelating corrosion inhibitors for mild steel in aqueous acidic medium. J Mol Liq 314:113651

    Article  CAS  Google Scholar 

  2. Dehghani A, Bahlakeh G, Ramezanzadeh B (2019) A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. J Mol Liq 282:366–384

    Article  CAS  Google Scholar 

  3. Abd El-Raouf M, Khamis EA, Abou Kana MTH, Negm NA (2018) Electrochemical and quantum chemical evaluation of new bis(coumarins) derivatives as corrosion inhibitors for carbon steel corrosion in 0.5 M H2SO4. J Mol Liq 255:341–353

    Article  CAS  Google Scholar 

  4. Belghiti ME, Karzazi Y, Dafali A, Obot IB, Ebenso EE, Emran KM, Bahadur I, Hammouti B, Bentiss F (2016) derivatives on mild steel corrosion in 2 M H3PO4 solution: experimental and theoretical studies. J Mol Liq 216:874–886

    Article  CAS  Google Scholar 

  5. Cherrak K, Benhiba F, Sebbar NK, Essassi EM, Taleb M, Zarrouk A, Dafali A (2019) Corrosion inhibition of mild steel by new Benzothiazine derivative in a hydrochloric acid solution: experimental evaluation and theoretical calculations. Chem Data Collect 22:100252

    Article  CAS  Google Scholar 

  6. El Defrawy A, Abdallah M, Al-Fahemi J (2019) Electrochemical and theoretical investigation for some pyrazolone derivatives as inhibitors for the corrosion of C-Steel in 0.5 M hydrochloric acid. J Mol Liq 288:110994

  7. Lashgari SM, Yari H, Mahdavian M, Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M (2021) Application of nanoporous cobalt-based ZIF-67 metal-organic framework (MOF) for construction of an epoxy-composite coating with superior anti-corrosion properties. Corros Sci 178:109099

    Article  CAS  Google Scholar 

  8. Rouifi Z, Rbaa M, Abousalem Ashraf S, Benhiba F, Laabaissi T, Oudda H, Lakhrissi B, Guenbour A, Warad I, Zarrouk A (2020) Synthesis characterization and corrosion inhibition potential of newly benzimidazole derivatives combining theoretical and experimental study. Surf Interfaces 18:100442

    Article  CAS  Google Scholar 

  9. Cherrak K, El Massaoudi M, Outada H, Taleb M, Lgaz H, Zarrouk A, Radi S, Dafali A (2021) Electrochemical and theoretical performance of new synthetized pyrazole derivatives as promising corrosion inhibitors for mild steel in acid environment: molecular structure effect on efficiency. J Mol Liq 342:117507

    Article  CAS  Google Scholar 

  10. Abdallah M, El Guesmi N, Al-Gorair AS, El-Sayed R, Meshabi A, Mohamed S (2021) Enhancing the anticorrosion performance of mild steel in sulfuric acid using synthetic non-ionic surfactants: practical and theoretical studies. Green Chem Lett Rev 14:381–393

    Article  Google Scholar 

  11. Abdallah M, Soliman KA, Al-Gorair AS, Al Bahir A, Al-Fahemi JH, Motawea MS, Al-Juaid SS (2021) Enhancing the inhibition and adsorption performance of SABIC iron corrosion in sulfuric acid by expired vitamins. Experimental and computational approach. RSC Adv 11:17092

    Article  CAS  Google Scholar 

  12. Sedik A, Lerari D, Salci A, Athmani S, Bachari K, Gecibesler İH, Solmaz R (2020) Dardagan fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: electrochemical and surface morphological studies. J Taiwan Inst Chem Eng 107:189–200

    Article  CAS  Google Scholar 

  13. Berrissoul A, Loukili E, Mechbal N, Benhiba F, Guenbour A, Dikici B, Zarrouk A, Dafali A (2020) Anticorrosion effect of a green sustainable inhibitor on mild steel in hydrochloric acid. J Colloid Interfaces Sci 580:740–752

    Article  CAS  Google Scholar 

  14. Radha KV, Patel D, Kumar N, Devasena T (2022) Investigation of eco-friendly corrosion inhibitor for low carbon steel using extract of Physalis minima leaves. J Bio Tribo Corros 8:1–11

    Google Scholar 

  15. Boukir A, Fellak S, Doumenq P (2019) Structural characterization of Argania Spinosa Moroccan wooden artifacts during natural degradation progress using Infrared Spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Heliyon 5:e02477

    Article  CAS  Google Scholar 

  16. Pais M, Rao P (2021) An up to date review on industrially significant inhibitors for corrosion control of zinc. J Bio Tribo Corros 7:117–130

    Article  Google Scholar 

  17. Abdallah M, Alfakeer M, Alonazi AM, Al-Juaid SS (2019) Ketamine drug as an inhibitor for the corrosion of 316 stainless steel in 2 M HCl solution. Int J Electrochem Sci 14:10227

    Article  CAS  Google Scholar 

  18. Shahmoradi AR, Talebibahmanbigloo N, Nickhil C, Nisha R, Javidparvar AA, Ghahremani P, Bahlakeh G, Ramezanzadeh B (2021) Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel. J Mol Liq 346:117921

    Article  Google Scholar 

  19. Al Jahdaly BA, Maghraby YR, Ibrahim AH, Shouier KR, Taher MM, El-Shabasy RM (2022) Role of green chemistry in sustainable corrosion inhibition: a review on recent developments. Mater Today Sustain 20:100242

    Article  Google Scholar 

  20. Abdallah M, Altass Hatem M, AL Jahdaly BA, Salem MM (2018) Some natural aqueous extracts of plants as green inhibitor for carbon steel corrosion in 0.5 M sulfuric acid. Green Chem Lett Rev 11(3):189

  21. Abdallah M, Altass HM, Al-Gorair AS, Al-Fahemi JH, Soliman KA (2021) Natural nutmeg oil as a green corrosion inhibitor for carbon steel in 1.0 M HCl solution: chemical, electrochemical and computational methods. J Mol Liq 323:115036

  22. Chen S, Chen S, Zhu B, Huang C, Li W (2020) Magnolia grandiflora leaves extract as a novel environmentally friendly inhibitor for Q235 steel corrosion in 1 M HCl: combining experimental and theoretical researches. J Mol Liq 311:113312

    Article  CAS  Google Scholar 

  23. Abdallah M, Soliman KA., Al Jahdaly BA, Al-Fahmi JH, Hawsawi H, Altass H.M, Sobhi M, Al-Juaid SS (2022) Natural parsley oil as a green and safe inhibitor for corrosion of X80 carbon steel in 0.5 M H2SO4 solution: a chemical, electrochemical, DFT and MC simulation approach. RSC Adv 12:2959

  24. Ramezanzadeh M, Bahlakeh G, Sanaei Z, Ramezanzadeh B (2018) Studying the Urtica dioica leaves extract inhibition effect on the mild steel corrosion in 1 M HCl solution: complementary experimental, ab initio quantum mechanics, Monte Carlo and molecular dynamics studies. J Mol Liq 272:120–136

    Article  CAS  Google Scholar 

  25. Berrissoul A, Ouarhach A, Benhiba F, Romane A, Zarrouk A, Guenbour A, Dikici B, Dafali A (2020) Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach. J Mol Liq 313:113493

  26. Adekunle AS, Olasunkanmi LO, Durodola SS, Oyekunle JAO, Olomola TO (2021) Investigation on corrosion inhibition of mild steel by extract of Dracaena arborea leaves in acidic medium. Chem Afr 4:647

    Article  CAS  Google Scholar 

  27. Abdelaziz S, Benamira M, Messaadia L, Boughoues Y, Lahmar H, Boudjerda A (2021) Green corrosion inhibition of mild steel in HCl medium using leaves extract of Arbutus unedo L. plant: an experimental and computational approach. Colloids Surf A Physicochem Eng Asp 619:126496

  28. Wang Q, Tan B, Bao H, Xie Y, Mou Y, Li P, Chen D, Shi Y, Li X, Yang W (2019) Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry 128:49

    Article  CAS  Google Scholar 

  29. Ogunleye OO, Arinkoola AO, Eletta OA, Agbede OO, Osho YA, Morakinyo AF, Hamed JO (2020) Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon 6:e03205

    Article  CAS  Google Scholar 

  30. Berrissoul A, Ouarhach A, Benhiba F, Romane A, Guenbour A, Outada H, Dafali A, Zarrouk A (2021) Exploitation of a new green inhibitor against mild steel corrosion in HCl: experimental, DFT and MD simulation approach. J Mol Liq 349:118102

    Article  Google Scholar 

  31. Al-Nowaiser FM, Abdallah M, El-Mossalamy EH (2011) rosemary oil as an inhibitor for corrosion of carbon steel in 0.5 M H2SO4 solution. Chem Technol Fuels Oils 47:66

  32. Ji G, Anjum S, Sundaram S, Prakash R (2015) Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution. Corros Sci 90:107–117

    Article  CAS  Google Scholar 

  33. Kisangau DP, Lyaruu HV, Hosea KM, Joseph CC (2007) Use of traditional medicines in the management of HIV/AIDS opportunistic infections in Tanzania: a case in the Bukoba rural district. J Ethnobiol Ethnomed 3:29–36

    Article  Google Scholar 

  34. N’Guessan K, Kadja B, Zirihi GN, Traoré D, Aké-Assi L (2009) Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sc Nat 6:1–15

    Google Scholar 

  35. Sujamol MS, Roy J, James KM (2021) Phytochemical screening and antimicrobial activity of Coleus aromaticus leaf extract. Mater Today Proc 41:596–599

    Article  Google Scholar 

  36. Ghedadba N, Hambaba L, Ayachi A (2015) Polyphénols totaux, activités antioxydante et antimicrobienne des extraits des feuilles de Marrubium deserti de Noé. Phytptherapy 13:118–129

    Article  CAS  Google Scholar 

  37. Iqbal EA, Linda A, Lima BL (2015) Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J King Saud Univ Sci 27:224–232

    Article  Google Scholar 

  38. Marsoul A, Ijjaali M, Oumous I, Bennani B, Boukir A (2020) Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Mater Today Proc 31:S183–S189

    Article  CAS  Google Scholar 

  39. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  40. Li HB, Cheng LW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  41. Brahmi F, Haddad S, Bouamara K, Yalaoui-Guellal D, Prost-Camus E, Pais de Barros J-P, Prost M, Atanasov AG, Madani K, Boulekbache-Makhlouf L, Lizard G (2020) Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L. Skeels. Ind Crops Prod 151:112456

  42. Kasmi M, Aourach M, El Boukari M, Barrijal S, Essalmani H (2017) Effectiveness of aqueous extracts of aromatic and medicinal plants against tomato grey mould in Morocco. C R Biol 340:386–393

    Article  Google Scholar 

  43. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex : specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  CAS  Google Scholar 

  44. Mansouri A, Embarek G, Kokkalou E, Kefalas P (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89:411–420

    Article  CAS  Google Scholar 

  45. Rumbaoa RGO, Cornago DF, Geronimo IM (2009) Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. J Food Compos Anal 22:546–550

    Article  CAS  Google Scholar 

  46. Sanchez-Moreno C (2002) Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Int J Food Sci Technol 8:121–137

    Article  CAS  Google Scholar 

  47. Benzie IFF, Strain IJJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  48. Bakour M, da Graça CM, Imtara H, Lyoussi B (2020) Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. J Apic Res 59:35–41

    Article  Google Scholar 

  49. Deshpande P, Gogia N, Singh A (2019) Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen Res 14:1321–1329

    Article  CAS  Google Scholar 

  50. Sachindra NM, Airanthi MKWA, Hosokawa M, Miyashita K (2010) Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Technol 47:94–99

    Article  CAS  Google Scholar 

  51. Kaneria MJ, Bapodara BM, Chanda SV (2012) Effect of Extraction techniques and solvents on antioxidant activity of pomegranate (Punica granatum L.) leaf and stem. Food Anal Method 5:396–404

    Article  Google Scholar 

  52. Marhoume FZ, Ait Laaradia M, Zaid Y, Laadraoui J, Oufquir S, Aboufatima R, Chait A, Bagri A (2019) Anti-aggregant effect of butanolic extract of Rubia tinctorum L on platelets in vitro and ex vivo. J Ethnopharmacol 241:111971

    Article  Google Scholar 

  53. Rovčanin BR, Ćebović T, Stešević D, Kekić D, Ristić M (2015) Antibacterial effect of Herniaria hirsuta, Prunus avium, Rubia tinctorum AND Sempervivum tectorum plant extracts on multiple antibiotic resistant Escherichia coli. Biosci J Uberlândia 31:1852–1861

    Article  Google Scholar 

  54. Essaidi I, Snoussi A, Ben Haj Koubaier H, Casabianca H, Bouzouita N (2017) Effect of acid hydrolysis on alizarin content, antioxidant and antimicrobial activities of Rubia tinctorum extracts. Pigm Resin Technol 46:379–384

    Article  CAS  Google Scholar 

  55. Oualcadi Y, Aityoub A, Berrekhis F (2021) Investigation of different antioxidant capacity measurements suitable for bioactive compounds applied to medicinal plants. Food Measure 15:71–83

    Article  Google Scholar 

  56. Mogensen DJ, Etzerodt M, Ogilby PR (2022) Photoinduced bleaching in an efficient singlet oxygen photosensitizing protein: Identifying a culprit in the flavin-binding LOV-based protein SOPP3. J Photochem Photobiol A 429:113894

    Article  CAS  Google Scholar 

  57. Cuoco G, Mathe C, Archier P, Vieillescazes C (2011) Characterization of madder and garancine in historic French red materials by liquid chromatography-photodiode array detection. J Cult Herit 12(2011):98–104

    Article  Google Scholar 

  58. Thabrew MI, Mitry RR, Morsy MA, Hughes RD (2005) Cytotoxic effects of a decoction of Nigella sativa, Hemidesmus indicus and Smilax glabra on human hepatoma HepG2 cells. Life Sci 77:1319–1330

    Article  CAS  Google Scholar 

  59. Boukir A, Mehyaoui I, Fellak S, Asia L, Doumenq P (2019) The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: a survey on spectroscopy and structural properties. Mediterr J Chem 8:179–190

    Article  CAS  Google Scholar 

  60. Noda I (2018) Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses of time-dependent ATR IR spectra of d-glucose anomers undergoing mutarotation process in water. Spectrochim Acta A 197:4–9

    Article  CAS  Google Scholar 

  61. El Darra N, Rajha HN, Saleh F, Al-Oweini R, Maroun RG, Louka N (2017) Food fraud detection in commercial pomegranate molasses syrups by UV-VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods. Food Control 78:132–137

    Article  Google Scholar 

  62. Zhicheng J, Jian Y, Jianmei L, Ting H, Changwei H (2015) Promoting effect of sodium chloride on the solubilization and depolymerization of cellulose from raw biomass materials in water. Chemsuschem 8:1901–1907

    Article  Google Scholar 

  63. Popescu CM, Gradinariu P, Popescu MC (2016) Structural analysis of lime wood biodegraded by white rot fungi through infrared and two dimensional correlation spectroscopy. J Mol Struct 1124:78–84

    Article  CAS  Google Scholar 

  64. Hajji L, Boukir A, Assouik J, Pessanha S, Figueirinhas JL, Carvalho ML, De, (2016) Artificial ageing paper to assess long term effects of conservative treatment. Monitoring by Infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and Energy dispersive X-ray fluorescence (EDXRF). Microchem J 124:646–656

    Article  CAS  Google Scholar 

  65. Hajji L, Boukir A, Assouik J, Kerbal A, Kajjout M, Doumenq P, Carvalho ML (2015) Multi-analytical approach for evaluation of the efficiency of conservation-restoration treatment of Moroccan historical manuscripts dating from the 16th, 17th and 18th centuries. Appl Spectrosc 69:920–938

    Article  CAS  Google Scholar 

  66. Schindler B, Barnes L, Renois G, Allouche AR, Compagnon I (2017) Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat Commun 8:973–980

    Article  Google Scholar 

  67. Oktay M, Gülçin I, Küfrevioğlu ÖI (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT Food Sci Technol 36:263–271

    Article  CAS  Google Scholar 

  68. Rabeta MS, Faraniza R (2013) Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int Food Res J 20:1691–1696

    Google Scholar 

  69. Siva R, Palackan MG, Maimoon L, Geetha T, Bhakta D, Balamurugan P, Rajanarayanan S (2011) Evaluation of antibacterial, antifungal, and antioxidant properties of some food dyes. Food Sci Biotechnol 20:7–13

    Article  CAS  Google Scholar 

  70. Cai Y, Luob Q, Sunc M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:57–84

    Article  Google Scholar 

  71. Priya MD, Siril EA (2014) Traditional and Modern Use of Indian Madder (Rubia cordifolia L.): an Overview. Int J Pharm Sci Rev Res 25:154–164

    Google Scholar 

  72. Jeremic S, Filipovic N, Peulic A, Markovic Z (2014) Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. Comput Theor Chem 1047:15–21

    Article  CAS  Google Scholar 

  73. Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B (2019) Utilizing lemon balm extract as an effective green corrosion inhibitor for mild steel in 1 M HCl solution: a detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J Taiwan Inst Chem Eng 95:252–272

    Article  CAS  Google Scholar 

  74. Yildiz R (2015) An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros Sci 90:544–553

    Article  CAS  Google Scholar 

  75. Fouda AS, Ismail MA, Abou-shahba RM, Husien WA, EL-Habab ES, Abousalem AS, (2020) Experimental and computational chemical studies on the cationic furanylnicotinamidines as novel corrosion inhibitors in aqueous solutions. Chin J Chem Eng 28:477–491

    Article  CAS  Google Scholar 

  76. Mert BD, ErmanMert M, Kardaş G, Yazıcı B (2011) Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros Sci 53:4265–4272

    Article  CAS  Google Scholar 

  77. Ech-chihbi E, Nahlé A, Salim R, Oudda H, El Hajjaji F, El Kalai F, El Aatiaoui A, Taleb M (2019) An Investigation into quantum chemistry and experimental evaluation of imidazopyridine derivatives as corrosion inhibitors for C-Steel in acidic media. J Bio Tribo Corros 5:24

    Article  Google Scholar 

  78. Cherrak K, Belghiti ME, Berrissoul A, El Massaoudi M, El Faydy M, Taleb M, Radi S, Zarrouk A, Dafali A (2020) Pyrazole carbohydrazide as corrosion inhibitor for mild steel in HCl medium: experimental and theoretical investigations. Surf Interfaces 20:100578

    Article  CAS  Google Scholar 

  79. Boudjellal F, Ouici HB, Guendouzi A, Benali O, Sehmi A (2020) Experimental and theoretical approach to the corrosion inhibition of mild steel in acid medium by a newly synthesized pyrazole carbothioamide heterocycle. J Mol Struct 1199:127051

    Article  CAS  Google Scholar 

  80. Heydari H, Talebian M, Salarvand Z, Raeissi K, Bagheri M, Golozar MA (2018) Comparison of two Schiff bases containing O-methyl and nitro substitutes for corrosion inhibiting of mild steel in 1 M HCl solution. J Mol Liq 254:177–187

    Article  CAS  Google Scholar 

  81. Belghiti ME, Nahlé A, Ansari A, Karzazi Y, Tighadouini S, Dafali A, Hammouti B, Radi S (2017) Inhibition effect of E and Z conformations of 2-pyridinecarboxaldehyde azine on mild steel corrosion in phosphoric acid. Anti Corros Mater Methods 64:23–35

    Article  CAS  Google Scholar 

  82. KharbachY QFZ, Haoudi A, Tourabi M, Zarrouk A, Jama C, Olasunkanmi LO, Ebenso EE, Bentiss F (2017) Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies. J Mol Liq 246:302–316

    Article  Google Scholar 

  83. Attou A, Tourabi M, Benikdes A, Benali O, Ouici HB, Benhiba F, Zarrouk A, Jama C, Bentiss F (2020) Experimental studies and computational exploration on the 2-amino-5-(2-methoxyphenyl)-1,3,4-thiadiazole as novel corrosion inhibitor for mild steel in acidic environment. Colloid Surf A 604:125320

    Article  CAS  Google Scholar 

  84. Tourabi M, Nohair K, Traisnel M, Jama C, Bentiss F (2013) Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corros Sci 75:123–133

    Article  CAS  Google Scholar 

  85. Marsoul A, Ijjaali M, El hajjaji F, Taleb M, Salim R, Boukir A, (2020) Phytochemical screening, total phenolic and flavonoid methanolic extract of pomegranate bark (Punica granatum L): evaluation of the inhibitory effect in acidic medium 1 M HCl. Mater Today Proc 27:3193–3198

    Article  CAS  Google Scholar 

  86. Radha KV, Patel D, Kumar N, Devasena T (2022) Correction to: investigation of eco-friendly corrosion inhibitor for low carbon steel using extract of Physalis minima leaves. J Bio Tribo Corros 8:65

    Article  Google Scholar 

  87. Bentiss F, Jama C, Mernari B, El Attari H, El Kadi L, Lebrini M, Traisnel M, Lagrenée M (2009) Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corros Sci 51:1628–1635

    Article  CAS  Google Scholar 

  88. Popova A, Christov M, Vasilev A (2011) Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part II: electrochemical impedance and polarisation resistance results. Corros Sci 53:1770–1777

    Article  CAS  Google Scholar 

  89. Growcock FB, Jasinski RJ (1989) Time-resolved impedance spectroscopy of mild steel in concentrated hydrochloric acid. J Electrochem Soc 136:2310–2314

    Article  CAS  Google Scholar 

  90. Faustin M, Maciuk A, Salvin P, Roos C, Lebrini M (2015) Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1 M hydrochloric acid: electrochemical and phytochemical studies. Corros Sci 92:287–300

    Article  CAS  Google Scholar 

  91. Lgaz H, Chung I-M, Albayati MR, Chaouiki A, Salghi R, Mohamed SK (2020) Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: an experimental and computational study. Arab J Chem 13:2934–2954

    Article  CAS  Google Scholar 

  92. Boujakhrout A, Hamdani I, Chahboun N, Bouyanzer A, Santana RV, Zarrouk A (2015) Antioxidant activity and corrosion inhibitive behavior of Garcinia cola seeds on mild steel in hydrochloric medium. J Mater Environ Sci 6:3655–3666

    CAS  Google Scholar 

  93. Lebrini M, Robert F, Lecante A, Roos C (2011) Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant. Corros Sci 53:687–695

    Article  CAS  Google Scholar 

  94. Liao LL, Mo S, Luo HQ, Li NB (2017) Longan seed and peel as environmentally friendly corrosion inhibitor for mild steel in acid solution: experimental and theoretical studies. J Colloid Interf Sci 499:110–119

    Article  CAS  Google Scholar 

  95. Fernandes CM, Ferreira Fagundes TS, dos Santos NE, Shewry TSM, Garrett R, Borges RM, Muricy G, Leda Valverde A, Ponzio EA (2019) Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium. Electrochim Acta 312:137–148

  96. El Hamdani N, Fdil R, Tourabi M, Jama C, Bentiss F (2015) Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and surface studies. Appl Surf Sci 357:1294–1305

  97. Alvarez PE, Fiori-Bimbi MV, Neske A, Brandan SA, Gervasi CA (2018) Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J Ind Eng Chem 58:92–99

    Article  CAS  Google Scholar 

  98. Belakhdar A, Ferkous H, Djellali S, Sahraoui R, Lahbib H, BenAmor Y, Erto A, Balsamo M, Benguerba Y (2020) Computational and experimental studies on the efficiency of Rosmarinus officinalis polyphenols as green corrosion inhibitors for XC48 steel in acidic medium. Colloid Surf A 606:125458

    Article  CAS  Google Scholar 

  99. Hanini K, Merzoug B, Boudiba S, Selatnia I, Laouer H, Akkal S (2019) Influence of different polyphenol extracts of Taxus baccata on the corrosion process and their effect as additives in electrodeposition. Sustain Chem Pharm 14:100189

    Article  Google Scholar 

  100. Abdallah M, Alfakeer M, Alshareef M, Hawsawi H, Al-Juaid SS, Abdel Hameed RS, Sobhi M (2022) Natural sweet almond oil as an effective green inhibitor for aluminum corrosion in sulfuric acid medium. Int J Electrochem Sci 17:220949

    Article  CAS  Google Scholar 

  101. Dafali A, Hammouti B, Mokhlisse R, Kertit S, Elkacemi K (2003) Substituted uracils as corrosion inhibitors for copper in 3% NaCl solution. Corros Sci 45:1619–1630

    Article  CAS  Google Scholar 

  102. Verma CB, Ebenso EE, Bahadur I, Obot IB, Quraishi MA (2015) 5-(Phenylthio)-3Hpyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: experimental and theoretical investigation. J Mol Liq 212:209–218

    Article  CAS  Google Scholar 

  103. El Kacimi Y, Touir R, Alaoui K, Kaya S, Salem Abousalem A, Ouakki M, Ebn Touhami M (2020) Anti-corrosion properties of 2-phenyl-4(3h)-quinazolinone-substituted compounds: electrochemical, quantum chemical, Monte Carlo, and molecular dynamic simulation investigation. J Bio Tribo Corros 5:24

    Google Scholar 

  104. Muthukrishnan P, Prakash P, Jeyaprabha B, Shankar K (2019) Stigmasterol extracted from Ficus hispida leaves as a green inhibitor for the mild steel corrosion in 1 M HCl solution. Arab J Chem 12:3345–3356

    Article  CAS  Google Scholar 

  105. Quraishi MA, Singh A, Singh VK, Yadav DK, Singh AK (2010) Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Mater Chem Phys 122:114–122

    Article  CAS  Google Scholar 

  106. Fergachi O, Benhiba F, Rbaa M, Ouakki M, Galai M, Touir R, Lakhrissi B, Oudda H, Ebn Touhami M (2019) Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: electrochemical, UV–visible spectrometry, and DFT calculations. J Bio Tribo Corros 5:21–34

    Article  Google Scholar 

  107. Ouakki M, Galai M, Benzekri Z, Verma C, Ech-chihbi E, Kaya S, Boukhris S, Ebenso EE, Ebn Touhami M, Cherkaoui M (2021) Insights into corrosion inhibition mechanism of mild steel in 1 M HCl solution by quinoxaline derivatives: electrochemical, SEM/EDAX, UV–visible, FT-IR and theoretical approaches. Colloid Surf A 20:125810

    Article  Google Scholar 

  108. Zhang WW, Li HJ, Wang YW, Liu Y, Gu QZ, Wu YC (2018) Gravimetric, electrochemical and surface studies on the anticorrosive properties of 1-(2-pyridyl)-2-thiourea and 2-(imidazol-2-yl)-pyridine for mild steel in hydrochloric acid. New J Chem 42:12649

    Article  CAS  Google Scholar 

  109. Zhang W, Ma Y, Chen L, Wang L-J, Wu Y-C, Li H-J (2020) Aloe polysaccharide as an eco-friendly corrosion inhibitor for mild steel in simulated acidic oilfield water: experimental and theoretical approaches. J Mol Liq 307:112950

    Article  CAS  Google Scholar 

  110. Chauhan DS, Verma C, Quraishi MA (2021) Molecular structural aspects of organic corrosion inhibitors: experimental and computational insights. J Mol Struct 1227:129374

    Article  CAS  Google Scholar 

Download references

Funding

There were no research grants for this work from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Boukir or A. Dafali.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsoul, A., Boukir, A., Ijjaali, M. et al. Phytochemical Characterization, Antioxidant Proprieties and Electrochemical Investigations of Methanolic Extract of Rubia t.L. Roots for LC-Steel Corrosion Protection in 1 M HCl Medium. J Bio Tribo Corros 9, 32 (2023). https://doi.org/10.1007/s40735-023-00749-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00749-6

Keywords

Navigation