Skip to main content

Advertisement

Log in

Dynamic Action of Mouthwashes Affects the Electrochemical Behavior of Ti6Al4V Alloy

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This study investigated the electrochemical behavior of the Ti6Al4V alloy under the influence of dynamic action of mouthwashes. Ti6Al4V alloy disks (n = 5) were dynamically exposed to mouthwashes (0.12% chlorhexidine digluconate [CHX], cetylpyridinium chloride [CC], and hydrogen peroxide [HP]) by immersion 3 times a day for 1 min. Artificial saliva [AS] is a control solution. The electrochemical behavior of the Ti6Al4V (n = 5) was tested at the baseline, and after 7 and 14 days of mouthwashes dynamic action. Surfaces characteristics were investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy, surface roughness, and Vickers microhardness. CC had the highest values of polarization resistance (Rp), and CHX reduced the capacitance values (Q) compared to the other groups (p < 0.05). HP generated the lowest Rp values in all periods, and the highest Q values after 14 days immersion (p < 0.05). CC and CHX did not alter the alloy potentiodynamic curves when compared to AS. HP increased the corrosion and passivation current densities, and the corrosion rate in relation to the other groups (p < 0.05). SEM micrographs showed minors surface changes with the presence of pitting corrosion for HP. No differences were found for roughness and microhardness after all immersion periods (p > 0.05). Dynamic mouthwash simulation with HP impairs the corrosion stability of Ti6Al4V alloy, and CC presents the greatest electrochemical stability over time. Our data shed light on how the dynamic action of mouthwashes affects the Ti electrochemical behavior aiming at ensuring a safer indication for patients receiving dental implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oliveira NT, Guastaldi PSF, Perrotti V et al (2013) Biomedical Ti-mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res 15(3):427–437. https://doi.org/10.1111/j.1708-8208.2011.00354.x

    Article  Google Scholar 

  2. Oliveira NT, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. England 5:399–405. https://doi.org/10.1016/j.actbio.2008.07.010

    Article  CAS  Google Scholar 

  3. Branemark PI, Hansson BO, Adell R et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132

    CAS  Google Scholar 

  4. Ekelund JA, Lindquist LW, Carlsson GE et al (2003) Implant treatment in the edentulous mandible: a prospective study on Branemark system implants over more than 20 years. Int J Prosthodont 16(6):602–608

    Google Scholar 

  5. Queiroz TP, Souza FA, Guastaldi AC et al (2013) Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clin Oral Implants Res 24(8):896–903. https://doi.org/10.1111/j.1600-0501.2012.02471.x

    Article  Google Scholar 

  6. Pi Y, Faure J, Agoda-Tandjawa G et al (2013) Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding. Microsc Res Tech 76(9):897–903. https://doi.org/10.1002/jemt.22245

    Article  CAS  Google Scholar 

  7. Faverani LP, Barão VAR, Ramalho-Ferreira G et al (2014) Effect of bleaching agents and soft drink on titanium surface topography. J Biomed Mater Res B Appl Biomater 102(1):22–30. https://doi.org/10.1002/jbm.b.32949

    Article  CAS  Google Scholar 

  8. Barao VA, Mathew MT, Assunção WG et al (2012) Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study. Clin Oral Implants Res 23(9):1055–1062. https://doi.org/10.1111/j.1600-0501.2011.02265.x

    Article  Google Scholar 

  9. Ho WF, Ju CP, Lin JH (1999) Structure and properties of cast binary Ti-Mo alloys. Biomaterials Netherlands 20:115–122. https://doi.org/10.1016/s0142-9612(99)00114-3

    Article  Google Scholar 

  10. Gosau M, Hahnel S, Schwarz F et al (2010) Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implants Res Denmark 2:866–872. https://doi.org/10.1111/j.1600-0501.2009.01908.x

    Article  Google Scholar 

  11. Pizzo G, Guiglia R, Imburgia M et al (2006) The effects of antimicrobial sprays and mouthrinses on supragingival plaque regrowth: a comparative study. J Periodontol 77(2):248–256. https://doi.org/10.1902/jop.2006.050116

    Article  Google Scholar 

  12. Hoenderdos NL, Rosema NAM, Slot DE et al (2009) The influence of a hydrogen peroxide and glycerol containing mouthrinse on plaque accumulation: a 3-day non-brushing model. Int J Dent Hyg. England 7:294–298. https://doi.org/10.1111/j.1601-5037.2009.00367.x

    Article  CAS  Google Scholar 

  13. Marinone MG, Savoldi E (2000) Chlorhexidine and taste Influence of mouthwashes concentration and of rinsing time. Minerva Stomatol 49(5):221–226

    CAS  Google Scholar 

  14. Wicht MJ, Haak R, Lummert D et al (2003) Treatment of root caries lesions with chlorhexidine-containing varnishes and dentin sealants. Am J Dent, 25A-30A.

  15. Sreenivasan PK, Haraszthy VI, Zambon JJ (2013) Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol 56(1):14–20. https://doi.org/10.1111/lam.12008

    Article  CAS  Google Scholar 

  16. Rosema NA, Timmerman MF, Versteeg PA et al (2008) Comparison of the use of different modes of mechanical oral hygiene in prevention of plaque and gingivitis. J Periodontol 79(8):1386–1394. https://doi.org/10.1902/jop.2008.070654

    Article  Google Scholar 

  17. De Waal YC et al (2013) Implant decontamination during surgical peri-implantitis treatment: a randomized, double-blind, placebo-controlled trial. J Clin Periodontol 40(2):186–195. https://doi.org/10.1111/jcpe.12034

    Article  Google Scholar 

  18. Hossainian N, Raghoebar GM, Slater JJRH et al (2011) The effects of hydrogen peroxide mouthwashes on the prevention of plaque and gingival inflammation: a systematic review. Int J Dent Hyg 9(3):171–181. https://doi.org/10.1111/jcpe.12034

    Article  CAS  Google Scholar 

  19. Milosev I, Kapun B, Selih VS (2013) The effect of fluoride ions on the corrosion behaviour of Ti metal, and Ti6-Al-7Nb and Ti-6Al-4V alloys in artificial saliva. Acta Chim Slov Slovenia 60:543–555

    CAS  Google Scholar 

  20. Quaranta A, Ronconi LF, Di Carlo F et al (2010) Electrochemical behaviour of titanium in ammine and stannous fluoride and chlorhexidine 0.2 percent mouthwashes. Int J Immunopathol Pharmacol 23:335–343. https://doi.org/10.1177/039463201002300132

    Article  CAS  Google Scholar 

  21. Faverani LP, Barao VAR, Pires MFA et al (2014) Corrosion kinetics and topography analysis of Ti-6Al-4V alloy subjected to different mouthwash solutions. Mater Sci Eng C Mater Biol Appl 43:1–10. https://doi.org/10.1016/j.msec.2014.06.033

    Article  CAS  Google Scholar 

  22. Alves-Rezende MC, Alves APR, Codaro EN et al (2007) Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. J Mater Sci Mater Med 18(1):149–154. https://doi.org/10.1007/s10856-006-0674-9

    Article  CAS  Google Scholar 

  23. Muguruma T, Iijima M, Brantley WA et al (2011) Effects of sodium fluoride mouth rinses on the torsional properties of miniscrew implants. Am J Orthod Dentofacial Orthop 139:588–593. https://doi.org/10.1016/j.ajodo.2009.05.042

    Article  Google Scholar 

  24. Schiff N, Grosgogeat B, Lissac M et al (2002) Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials 23(9):1995–2002. https://doi.org/10.1016/s0142-9612(01)00328-3

    Article  CAS  Google Scholar 

  25. Barão VA, Mathew MT, Assunção WG et al (2011) The role of lipopolysaccharide on the electrochemical behavior of titanium. J Dent Res 90(5):613–618. https://doi.org/10.1177/0022034510396880

    Article  CAS  Google Scholar 

  26. Faverani LP, Assunção WG, de Carvalho PS et al (2014) Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching. PLoS ONE 9(3):e93377. https://doi.org/10.1371/journal.pone.0093377

    Article  CAS  Google Scholar 

  27. Landolt D, Stemp MS (2011) Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta 46(24–25):3913–3929. https://doi.org/10.1016/S0013-4686(01)00679-X

    Article  Google Scholar 

  28. Assuncao WG, Jorge JRP, Dos Santos PH et al (2011) The effect of mechanical cycling and different misfit levels on Vicker’s microhardness of retention screws for single implant-supported prostheses. J Prosthodont 20(7):523–527. https://doi.org/10.1111/j.1532-849X.2011.00753.x

    Article  Google Scholar 

  29. Yu F, Addison O, Davenport AJ (2015) A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater 26:355–365. https://doi.org/10.1016/j.actbio.2015.07.046

    Article  CAS  Google Scholar 

  30. Gopal V, Manivasagam G (2020) Wear – Corrosion synergistic effect on Ti–6Al–4V alloy in H2O2 and albumin environment. J Alloys Compd 830:154539. https://doi.org/10.1016/j.jallcom.2020.154539

    Article  CAS  Google Scholar 

  31. Bearinger JP, Orme CA, Gilbert JL (2003) Effect of hydrogen peroxide on titanium surfaces: In situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium. J Biomed Mater Res - Part A 67:702–712. https://doi.org/10.1002/jbm.a.10116

    Article  CAS  Google Scholar 

  32. Khamis A, Saleh MM, Awad MI (2013) Synergistic inhibitor effect of cetylpyridinium chloride and other halides on the corrosion of mild steel in 0.5M H2SO4. Corros Sci 66:343–349. https://doi.org/10.1016/j.corsci.2012.09.040

    Article  CAS  Google Scholar 

  33. ArockiaSelvi J, Kamaraj P, Arthanareeswari M et al (2019) Effect of Cetylpyridinium chloride on corrosion inhibition of mild steel in chloride environment. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.04.146

    Article  Google Scholar 

  34. Deyab MA, Keera ST, El Sabagh SM (2011) Chlorhexidine digluconate as corrosion inhibitor for carbon steel dissolution in emulsified diesel fuel. Corros Sci 53:2592–2597. https://doi.org/10.1016/j.corsci.2011.04.018

    Article  CAS  Google Scholar 

  35. Pavlic A, Perissinotto F, Turco G et al (2019) Do Chlorhexidine and probiotics solutions provoke corrosion of orthodontic mini-implants? An in vitro study. Int J Oral Maxillofac Implants 34:1379–1388. https://doi.org/10.11607/jomi.7392

    Article  Google Scholar 

  36. Danaei SM, Safavi A, Roeinpeikar SMM et al (2011) Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am J Orthod Dentofac Orthop 139:730–734. https://doi.org/10.1016/j.ajodo.2011.03.004

    Article  Google Scholar 

  37. Peñarrieta-Juanito G, Sordi MB, Henriques B et al (2019) Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide. J Periodontal Res 54:46–52. https://doi.org/10.1111/jre.12603

    Article  CAS  Google Scholar 

  38. Licausi MP, Igual Muñoz A, Amigó Borrás V (2013) Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J Mech Behav Biomed Mater 20:137–148. https://doi.org/10.1016/j.jmbbm.2013.01.019

    Article  CAS  Google Scholar 

  39. Olvano I, Garcia I, Conde A, Tato W, Aginagalde A (2015) Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment. J Mech Behav Biomed Mater 49:186–196. https://doi.org/10.1016/j.jmbbm.2015.05.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília A. Sousa.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, C.A., Cordeiro, J.M., Silva, A.O. et al. Dynamic Action of Mouthwashes Affects the Electrochemical Behavior of Ti6Al4V Alloy. J Bio Tribo Corros 7, 158 (2021). https://doi.org/10.1007/s40735-021-00591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00591-8

Keywords

Navigation