Skip to main content
Log in

Effect of Ball Burnishing on Surface Roughness and Wear of AISI 316L SS

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This work aims at the improvement of surface quality and wear resistance of AISI 316L stainless steel, used in different industrial sectors including orthopedic applications. Ball-burnishing treatment, considered as a very efficient mechanical finish process, was applied with respect to the response surface method. Surface roughness parameter Ra was minimized by using a mathematical model based on Box–Behnken model and expressing Ra as a function of applied charge, feed rate, and ball diameter. After optimization, the selected regime was fixed and the number of passes was increased by up to 5. Ra was measured again and tribological behavior was studied. Results show that surface roughness of best burnished sample can be decreased to a value much less by 93.4% and correspondingly, its wear loss can be improved by 53.4%, but with respect to fix 3 passes during ball burnishing. Morphologies of wear scars analyzed by scanning electron microscopy specify that adhesive wear occurred in both untreated and burnished surfaces. The coefficient of friction, measured under dry conditions, was reduced only for the smoothest surface, while other specimens had elevated coefficient of friction compared to turned surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BB:

Ball burnishing

COF:

Coefficient of friction

D :

Ball diameter [mm]

f :

Burnishing feed rate[mm/rev]

f t :

Turning feed rate [mm/rev]

i:

Number of burnishing passes

N:

Rotational frequency [rev/min]

p:

Depth of pass [mm]

Px :

Burnishing force [N]

Ra:

Arithmetical surface roughness average [μm]

RSM:

Response surface method

SS:

Stainless steel

References

  1. Fellah M, Labaïz M, Assala O, Iost A, Dekhil L (2013) Tribological behaviour of AISI 316L stainless steel for biomedical applications. Tribol Mater Surf Interfaces 7:135–149. https://doi.org/10.1179/1751584X13Y.0000000032

    Article  CAS  Google Scholar 

  2. Yazıcı M, Kovacı H, Yetim AF, Çelik A (2018) Structural, mechanical and tribological properties of Ti and TiN coatings on 316L stainless steel. Ceram Int 44:14195–14201. https://doi.org/10.1016/j.ceramint.2018.05.022

    Article  CAS  Google Scholar 

  3. Teoh S (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837. https://doi.org/10.1016/S0142-1123(00)00052-9

    Article  CAS  Google Scholar 

  4. St John K (ed) (1992) Particulate debris from medical implants: mechanisms of formation and biological consequences. ASTM International, West Conshohocken

    Google Scholar 

  5. Ahmed AA, Mhaede M, Wollmann M, Wagner L (2014) Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI 316L. Surf Coat Technol 259:448–455. https://doi.org/10.1016/j.surfcoat.2014.10.052

    Article  CAS  Google Scholar 

  6. Attabi S, Mokhtari M, Taibi Y, Abdel-Rahman I, Hafez B, Elmsellem H (2019) Electrochemical and tribological behavior of surface-treated titanium alloy Ti–6Al–4V. J Bio- Tribo-Corros. https://doi.org/10.1007/s40735-018-0193-5

    Article  Google Scholar 

  7. Laouar L, Hamadache H, Saad S, Bouchelaghem A, Mekhilef S (2009) Mechanical surface treatment of steel-optimization parameters of regime. Phys Proc 2:1213–1221. https://doi.org/10.1016/j.phpro.2009.11.084

    Article  Google Scholar 

  8. Hassan AM (1997) The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J Mater Process Technol 72:385–391. https://doi.org/10.1016/S0924-0136(97)00199-4

    Article  Google Scholar 

  9. Hassan AM, Al-Wahhab OMA (1998) Surface characteristics of some roller burnished non-ferrous components. Mater Manuf Processes 13:505–515. https://doi.org/10.1080/10426919808935272

    Article  CAS  Google Scholar 

  10. Dimitrov DM, Slavov SD, Dimitrov Z (2017) Experimental research on the effect of the ball burnishing process, using new kinematical scheme on hardness and phase composition of surface layer of AISI 304L stainless steel. MATEC Web Conf 112:02001. https://doi.org/10.1051/matecconf/201711202001

    Article  CAS  Google Scholar 

  11. Amdouni H, Bouzaiene H, Montagne A, Van Gorp A, Coorevits T, Nasri M, Iost A (2017) Experimental study of a six new ball-burnishing strategies effects on the Al-alloy flat surfaces integrity enhancement. Int J Adv Manuf Technol 90:2271–2282. https://doi.org/10.1007/s00170-016-9529-9

    Article  Google Scholar 

  12. López de Lacalle LN, Rodríguez A, Lamikiz A, Celaya A, Alberdi R (2011) Five-axis machining and burnishing of complex parts for the improvement of surface roughness. Mater Manuf Process 26(8):997–1003. https://doi.org/10.1080/10426914.2010.529589

    Article  CAS  Google Scholar 

  13. Hamadache H, Laouar L, Zeghib NE, Chaoui K (2006) Characteristics of Rb40 steel superficial layer under ball and roller burnishing. J Mater Process Technol 180:130–136. https://doi.org/10.1016/j.jmatprotec.2006.05.013

    Article  CAS  Google Scholar 

  14. Gu Y, Zheng X, Liu Q, Ma H, Zhang L, Yang D (2018) Investigating corrosion performance and corrosive wear behavior of Sol–gel/MAO-Coated Mg alloy. Tribol Lett. https://doi.org/10.1007/s11249-018-1052-8

    Article  Google Scholar 

  15. El-Tayeb NSM, Low KO, Brevern PV (2008) Enhancement of surface quality and tribological properties using ball burnishing process. Mach Sci Technol 12:234–248. https://doi.org/10.1080/10910340802067536

    Article  CAS  Google Scholar 

  16. Abrão AM, Denkena B, Breidenstein B, Mörke T (2014) Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel. Prod Eng Res Devel 8:551–558. https://doi.org/10.1007/s11740-014-0539-x

    Article  Google Scholar 

  17. Gharbi F, Sghaier S, Morel F, Benameur T (2015) Experimental investigation of the effect of burnishing force on service properties of AISI 1010 steel plates. J Mater Eng Perform 24:721–725. https://doi.org/10.1007/s11665-014-1349-1

    Article  CAS  Google Scholar 

  18. Lee SSG, Tam SC, Loh NH n.d. Ball burnishing of 316L stainless steel 11

  19. Yilmaz H, Sadeler R (2018) Effect of ball burnishing treatment on the fatigue behavior of 316L stainless steel operating under anodic and cathodic polarization potentials. Metall Mater Trans A 49:5393–5401. https://doi.org/10.1007/s11661-018-4889-4

    Article  CAS  Google Scholar 

  20. Yilmaz H, Sadeler R (2019) Impact wear behavior of ball burnished 316L stainless steel. Surf Coat Technol 363:369–378. https://doi.org/10.1016/j.surfcoat.2019.02.022

    Article  CAS  Google Scholar 

  21. Tanaka H, Ishii W, Yanagi K (2011) Optimal burnishing conditions and mechanical properties of surface layerby surface modification effect induced of applying burnishing processto stainless steel and aluminum alloy. J Jpn Soc Technol Plast 52:726–730. https://doi.org/10.9773/sosei.52.726

    Article  CAS  Google Scholar 

  22. Goupy J (1999) Plans d’expériences pour surfaces de réponse. Dunod, Paris

    Google Scholar 

  23. Amanov A, Cho I-S, Kim D-E, Pyun Y-S (2012) Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification. Surf Coat Technol 207:135–142. https://doi.org/10.1016/j.surfcoat.2012.06.046

    Article  CAS  Google Scholar 

  24. Marteau J, Bigerelle M, Mazeran P-E, Bouvier S (2015) Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening. Tribol Int 82:319–329. https://doi.org/10.1016/j.triboint.2014.07.013

    Article  CAS  Google Scholar 

  25. Bourebia M, Laouar L, Hamadache H, Dominiak S (2017) Improvement of surface finish by ball burnishing: approach by fractal dimension. Surf Eng 33:255–262. https://doi.org/10.1080/02670844.2016.1232778

    Article  CAS  Google Scholar 

  26. El-Taweel TA, El-Axir MH (2009) Analysis and optimization of the ball burnishing process through the Taguchi technique. Int J Adv Manuf Technol 41:301–310. https://doi.org/10.1007/s00170-008-1485-6

    Article  Google Scholar 

  27. Hassan AM, Al-Jalil HF, Ebied AA (1998) Burnishing force and number of ball passes for the optimum surface finish of brass components. J Mater Process Technol 83:176–179. https://doi.org/10.1016/S0924-0136(98)00058-2

    Article  Google Scholar 

  28. Li FL, Xia W, Zhou ZY, Zhao J, Tang ZQ (2012) Analytical prediction and experimental verification of surface roughness during the burnishing process. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2012.06.001

    Article  Google Scholar 

  29. Zhao J, Zhanqiang L (2020) Plastic flow behavior for machined surface material Ti-6Al-4V with rotary ultrasonic burnishing. J Mater Res Technol 9(2):2387–2401. https://doi.org/10.1016/j.jmrt.2019.12.071

    Article  CAS  Google Scholar 

  30. Bounezour H, Laouar L, Bourbia M, Ouzine B (2019) Effects of work hardening on mechanical metal properties—experimental analysis and simulation by experiments. Int J Adv Manuf Technol 101:2475–2485. https://doi.org/10.1007/s00170-018-3071-x

    Article  Google Scholar 

  31. López de Lacalle LN, Lamikiz A, Sanchez JA, Arana JL (2007) The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. Int J Adv Manuf Technol 32:958–968

    Article  Google Scholar 

  32. Branko T, Petar MT, Ognjan L, Dragomir M, Branislav MJ, Bojan B, Djordje V (2012) Using specially designed high-stiffness burnishing tool to achieve high-quality surface finish. Int J Adv Manuf Technol 67:601–611

    Google Scholar 

  33. El-Axir MH, Othman OM, Abodiena AM (2008) Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. J Mater Process Technol 202:435–442. https://doi.org/10.1016/j.jmatprotec.2007.10.040

    Article  CAS  Google Scholar 

  34. Lin N, Li D, Zou J, Guo J, Yuan S, Wang Z, Tang B (2018) Tribological behavior of electrochemically etched AISI 316 stainless steel with a textured surface. J Mater Eng Perform 27:6616–6628. https://doi.org/10.1007/s11665-018-3748-1

    Article  CAS  Google Scholar 

  35. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2017) Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. J Mater Res Technol 6:13–32. https://doi.org/10.1016/j.jmrt.2016.03.007

    Article  CAS  Google Scholar 

  36. Sedlaček M, Podgornik B, Vižintin J (2009) Influence of surface preparation on roughness parameters, friction and wear. Wear 266:482–487. https://doi.org/10.1016/j.wear.2008.04.017

    Article  CAS  Google Scholar 

  37. Dogan H, Findik F, Morgul O (2002) Friction and wear behaviour of implanted AISI 316L SS and comparison with a substrate. Mater Des 23:605–610. https://doi.org/10.1016/S0261-3069(02)00066-3

    Article  CAS  Google Scholar 

  38. Keller J, Fridrici V, Kapsa Ph, Huard JF (2009) Surface topography and tribology of cast iron in boundary lubrication. Tribol Int 42:1011–1018. https://doi.org/10.1016/j.triboint.2009.02.008

    Article  CAS  Google Scholar 

  39. Rao DS, Suresh HH, Komaraiah M, Kempaiah UN (2008) Investigations on the effect of ball burnishing parameters on surface hardness and wear resistance of HSLA dual-phase steels. Mater Manuf Process 23:295–302

    Article  CAS  Google Scholar 

  40. Godse RS, Gawande SH, Keste AA (2016) Tribological behavior of high fraction carbon steel alloys. J Bio- Tribo-Corros 2:3. https://doi.org/10.1007/s40735-016-0034-3

    Article  Google Scholar 

  41. QinW KJ, Li J, Yue W, Liu Y, She D, MaoQ LY (2018) Tribological behavior of the 316L stainless steel with heterogeneous lamella structure. Materials 11:1839. https://doi.org/10.3390/ma11101839

    Article  CAS  Google Scholar 

  42. Kuznetsov VP, Makarov AV, Psakhie SG, Savrai RA, Malygina IYu, Davydova NA (2014) Tribological aspects in nanostructuring burnishing of structural steels. Phys Mesomech 17:250–264. https://doi.org/10.1134/S102995991404002X

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the response of Mechanics and Structures (LMS) Research Laboratory, University of 8th May 1945, Guelma, Algeria, for their involvement in our study.

Funding

Not applicable for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selma Attabi or Abdelaziz Himour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attabi, S., Himour, A., Laouar, L. et al. Effect of Ball Burnishing on Surface Roughness and Wear of AISI 316L SS. J Bio Tribo Corros 7, 7 (2021). https://doi.org/10.1007/s40735-020-00437-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00437-9

Keywords

Navigation