Skip to main content

Advertisement

Log in

A New Ternary Alloy Ti26Zr24Nb for Biomedical Application: Behavior in Corrosion, Wear, and Tribocorrosion

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Titanium (Ti)-based alloys with only β-phase have arisen the interest of academics and industrials for bone implants due to their mechanical properties close to those of hard tissues, and for the capability of allowing with β-stabilizers, totally biocompatible elements like Nb, Ta, and Zr. However, there is no consensus about the most adequate composition and, in many cases, tribocorrosion behavior is not considered during their development. New ternary alloy Ti26Zr24Nb as biomaterial is the matter of study of this work regarding wear and corrosion resistances, and the tribocorrosion behavior of this alloy in contact with pH 7, deaerated Hanks solution at 37 °C to simulate a body fluid. All samples have had surface prepared according to the same protocol and a subtract characterization previously and after the electrochemical, dry wear, and tribocorrosion experiments. Results showed high corrosion resistance, with constant open circuit potential (~ − 200 mV) and low corrosion current density (~ 0.9 × 10−8 A/cm2) and important pitting resistance, as well as higher coefficient of friction (COF) for both wear (0.69) and tribocorrosion (0.65) tests than those reported in the literature and, additionally, less wear under tribocorrosion condition compared to dry wear test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tong YX et al (2011) Effects of Sn and Zr on the microstructure and mechanical properties of Ti-Ta-based shape memory alloys. J Mater Eng Perform 20(4–5):762–766

    CAS  Google Scholar 

  2. Wang BL, Zheng YF, Zhao LC (2008) Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys. Mater Sci Eng, A 486(1–2):146–151

    Google Scholar 

  3. Hansen AW et al (2015) The electrochemical behavior of the NiTi alloy in different simulated body fluids. Mater Res 18(1):184–190

    CAS  Google Scholar 

  4. Terlinde G, Fischer G (2003) Beta titanium alloys. In: Leyens C, Peters M (eds) Titanium and titanium alloys: fundamentals and applications. Wiley, Weinheim, pp 37–55

    Google Scholar 

  5. Biesiekierski A et al (2012) A new look at biomedical Ti-based shape memory alloys. Acta Biomater 8(5):1661–1669

    CAS  Google Scholar 

  6. Brailovski V et al (2011) Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications. Mater Sci Eng C 31(3):643–657

    CAS  Google Scholar 

  7. Long M, Rack HJ (1998) Titanium alloys in total joint replacement: a materials science perspective. Biomaterials 19(18):1621–1639

    CAS  Google Scholar 

  8. Correa DRN et al (2016) Tribocorrosion behavior of β-type Ti–15Zr-based alloys. Elsevier, Amsterdam

    Google Scholar 

  9. Wang YB, Zheng YF (2009) Corrosion behaviour and biocompatibility evaluation of low modulus Ti–16Nb shape memory alloy as potential biomaterial. Mater Lett 63(15):1293–1295

    CAS  Google Scholar 

  10. Gordin DM et al (2005) Synthesis, structure and electrochemical behavior of a beta Ti–12Mo–5Ta alloy as new biomaterial. Mater Lett 59(23):2936–2941

    CAS  Google Scholar 

  11. Ribeiro ALR et al (2013) Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomed Mater (Bristol) 8:6

    Google Scholar 

  12. Inaekyan K et al (2015) Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys. Mater Charact 103:65–74

    CAS  Google Scholar 

  13. Wang BL, Li L, Zheng YF (2010) In vitro cytotoxicity and hemocompatibility studies of Ti–Nb, Ti–Nb–Zr and Ti–Nb–Hf biomedical shape memory alloys. Biomed Mater 5:10

    CAS  Google Scholar 

  14. Guo YY et al (2012) In vitro corrosion resistance and cytotoxicity of novel TiNbTaZr alloy. Trans Nonferrous Met Soc China (Engl Ed) 22(1):s175–s180

    Google Scholar 

  15. Cremasco A et al (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31(5):833–839

    CAS  Google Scholar 

  16. Vasilescu E et al (2010) In vitro biocompatibility and corrosion resistance of a new implant titanium base alloy. J Mater Sci-Mater Med 21(6):1959–1968

    CAS  Google Scholar 

  17. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    CAS  Google Scholar 

  18. Bosshardt DD, Chappuis V, Buser D (2017) Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 73(1):22–40

    Google Scholar 

  19. Liu XH et al (2015) Cytocompatibility and early osseointegration of nanoTiO2-modified Ti–24Nb–4Zr–7.9 Sn surfaces. Mater Sci Eng C 48:256–262

    CAS  Google Scholar 

  20. Martins DQ et al (2008) Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim Acta 53(6):2809–2817

    CAS  Google Scholar 

  21. Stenlund P et al (2015) Bone response to a novel Ti–Ta–Nb–Zr alloy. Acta Biomater 20:165–175

    CAS  Google Scholar 

  22. Oshida Y (2010) Bioscience and bioengineering of titanium materials. Elsevier, Amsterdam

    Google Scholar 

  23. Silva TSN et al (2009) Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: an experimental study. Acta Cir Brasil 24(3):200–205

    Google Scholar 

  24. Kt B et al (1993) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Implant Dent 2(2):131

    Google Scholar 

  25. Keller JC et al (2003) Effects of implant microtopography on osteoblast cell attachment. Implant Dent 12(2):175–181

    Google Scholar 

  26. Ozawa S (2002) Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 17(1):23–29

    Google Scholar 

  27. Zhu X et al (2004) Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Org 178(1):13–22

    CAS  Google Scholar 

  28. Barril S, Mischler S, Landolt D (2004) Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt.% sodium chloride solution. Wear 256(9–10):963–972

    CAS  Google Scholar 

  29. Cvijović-alagić I et al (2011) Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution. Corros Sci 53(2):796–808

    Google Scholar 

  30. Ureña J et al (2018) Corrosion and tribocorrosion behaviour of β-type Ti–Nb and Ti–Mo surfaces designed by diffusion treatments for biomedical applications. Corros Sci 140(June):51–60

    Google Scholar 

  31. Calderon-Moreno JM et al (2014) Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. J Alloy Compd 612:398–410

    CAS  Google Scholar 

  32. Assis SL, Wolynec S, Costa I (2008) The electrochemical behaviour of Ti–13Nb–13Zr alloy in various solutions. Mater Corros 59(9):739–743

    CAS  Google Scholar 

  33. Niemeyer TC et al (2009) Corrosion behavior of Ti–13Nb–13Zr alloy used as a biomaterial. J Alloy Compd 476(1–2):172–175

    CAS  Google Scholar 

  34. Tanaka Y et al (2008) Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corros Sci 50(8):2111–2116

    CAS  Google Scholar 

  35. De Assis SL, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51(8–9):1815–1819

    Google Scholar 

  36. Saji VS, Choe HC (2009) Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution. Corros Sci 51(8):1658–1663. https://doi.org/10.1016/j.corsci.2009.04.013

    Article  CAS  Google Scholar 

  37. Martins DQ et al (2009) Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys. J Alloys Compd 478(1–2):111–116

    CAS  Google Scholar 

  38. Metikoš-Huković M, Kwokal A, Piljac J (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24(21):3765–3775

    Google Scholar 

  39. Yang S et al (2013) Effects of the Zr and Mo contents on the electrochemical corrosion behavior of Ti–22Nb alloy. Mater Corros 64(5):402–407

    CAS  Google Scholar 

  40. López MF, Jiménez JA, Gutiérrez A (2003) Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim Acta 48(10):1395–1401

    Google Scholar 

  41. Yu SY, Scully JR, Vitus CM (2001) Influence of niobium and zirconium alloying additions on the anodic dissolution behavior of activated titanium in HCl solutions. J Electrochem Soc 148(2):B68–B78

    CAS  Google Scholar 

  42. Mahundla MR, Matizamhuka WR, Yamamoto A et al (2020) Corrosion behaviour of Ti–34Nb–25Zr alloy fabricated by spark plasma sintering. J Bio Tribo Corros 6:38. https://doi.org/10.1007/s40735-020-0332-7

    Article  Google Scholar 

  43. Yang X, Hutchinson CR (2016) Corrosion-wear of β-Ti alloy TMZF (Ti–12Mo–6Zr–2Fe) in simulated body fluid. Acta Biomater 42:429–439

    CAS  Google Scholar 

  44. Diomidis N et al (2011) Fretting-corrosion behavior of beta titanium alloys in simulated synovial fluid. Wear 271(7–8):1093–1102. https://doi.org/10.1016/j.wear.2011.05.010

    Article  CAS  Google Scholar 

  45. Diomidis N et al (2012) Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomater 8(2):852–859. https://doi.org/10.1016/j.actbio.2011.09.034

    Article  CAS  Google Scholar 

  46. More NS et al (2011) Tribocorrosion behavior of beta titanium alloys in physiological solutions containing synovial components. Mater Sci Eng, C 1(2):400–408. https://doi.org/10.1016/j.msec.2010.10.021

    Article  CAS  Google Scholar 

  47. Landolt D, Mischler S, Stemp M (2001) Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta 46(24–25):3913–3929

    CAS  Google Scholar 

  48. Mischler S, Spiegel A, Landolt D (1999) The role of passive oxide films on the degradation of steel in tribocorrosion systems. Wear 225–229:1078–1087

    Google Scholar 

  49. Dǎnǎilǎ E, Benea L (2017) The effect of normal force on tribocorrosion behaviour of Ti–10Zr alloy and porous TiO2–ZrO2 thin film electrochemical formed. IOP Conf Ser Mater Sci Eng 209:1

    Google Scholar 

  50. Mathew MT et al (2011) Tribocorrosion behavior of CoCrMo alloy for hip prosthesis as a function of loads: a comparison between two testing systems. Wear 271(9–10):1210–1219

    CAS  Google Scholar 

  51. Choubey A, Basu B, Balasubramaniam R (2005) Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Trends Biomater Artif Org 18(2):141–147

    Google Scholar 

  52. Manhabosco TM et al (2011) Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros Sci 53(5):1786–1793. https://doi.org/10.1016/j.corsci.2011.01.057

    Article  CAS  Google Scholar 

  53. Sadiq K, Black RA, Stack MM (2014) Bio-tribocorrosion mechanisms in orthopaedic devices: mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution. Wear 316(1–2):58–69

    CAS  Google Scholar 

  54. Lee YS et al (2015) Differences in wear behaviors at sliding contacts for β-type and (α + β)-type titanium alloys in Ringer’s solution and air. Mater Trans 56(3):317–326

    CAS  Google Scholar 

  55. Pina GV et al (2015) Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. J Mech Behav Biomed Mater 46:59–68

    CAS  Google Scholar 

  56. Hacisalihoglu I et al (2014) Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear 332–333:679–686. https://doi.org/10.1016/j.wear.2014.12.017

    Article  CAS  Google Scholar 

  57. Attabi S et al (2018) Electrochemical and tribological behavior of surface-treated titanium alloy Ti–6Al–4V. J Bio Tribo Corros 5(1):2. https://doi.org/10.1007/s40735-018-0193-5

    Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the Brazilian Funding Agencies CNPq (National Council for Scientific and Technological Development) and CAPES (Coordination for the Improvement of Higher Education Personnel—CAPES—PROEX-23038.000341/2019-71). The authors thank professor Vladimir Brailovski from École de Technologie Supérieure (ÉTS)—Université du Québec, for sample supply. F. Lopes da Silva thanks IFRS for the license to conduct doctorate studies and thanks. Dr. Ortega Vega thanks CNPq for the Post-doctorate scholarship (Grant 155274/2018-0) and CAPES PNPD (Grant 88887.463867/2019-00). C.F. Malfatti acknowledges CNPq (Grant 307723/2018-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Lopes da Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.L., Antonini, L.M., Vega, M.R.O. et al. A New Ternary Alloy Ti26Zr24Nb for Biomedical Application: Behavior in Corrosion, Wear, and Tribocorrosion. J Bio Tribo Corros 6, 86 (2020). https://doi.org/10.1007/s40735-020-00376-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00376-5

Keywords

Navigation