Skip to main content
Log in

Anticorrosion Behaviour of a Hydrazide Derivative on 6061 Al-15%(v) SiC(P) Composite in Acid Medium: Experimental and Theoretical Calculations

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The present work describes the evaluation of anticorrosion property of 4-hydroxy-N′-[3-phenylprop-2-en-1-ylidene] benzohydrazide (HBH) on 6061 Al-15%(v) SiC(P) composite (Al-CM) in 0.5 M hydrochloric acid medium. The results of electrochemical measurement and specimen morphology study are discussed in this work. The adsorption of HBH over the Al-CM surface is through physisorption and obeys the Langmuir’s isotherm model. Potentiodynamic polarization study showed that the HBH acted as mixed inhibitor. The electrochemical impedance spectroscopy (EIS) study showed that the increase in the adsorption tendency of HBH on to the metal surface is due to increase in the polarization resistance. Density functional theory (DFT)-based calculations were carried out for both neutral and protonated HBH molecules which is well supported by the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Al-CM:

6061 Al-15%(v) SiC(P) composite

HBH:

4-Hydroxy-N′-[3-phenylprop-2-en-1-ylidene] benzohydrazide

HCl:

Hydrochloric acid medium

EIS:

Electrochemical impedance spectroscopy

PDP:

Potentiodynamic polarization

OCP:

Open-circuit potential

E corr :

Corrosion potential

%IE:

Percentage Inhibition efficiency

CR:

Corrosion rate

i corr :

Corrosion current density

DFT:

Density functional theory

SEM:

Scanning electron microscope

EDX:

Energy-dispersive X-ray

AFM:

Atomic force microscope

References

  1. Goulart CM, Esteves-Souza A, Martinez-Huitle CA, Rodrigues CJF, Maciel MAM, Echevarria A (2013) Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros Sci 67:281–291

    Article  CAS  Google Scholar 

  2. Sharma CP (2004) Engineering materials: properties and applications of metals and alloys. Prentice-Hall of India, New Delhi

    Google Scholar 

  3. Sayed El, Sharif M (2011) Effects of graphite on the corrosion behavior of aluminum graphite composite in sodium chloride solutions. Int J Electrochem Sci 6:1085–1099

    Google Scholar 

  4. Pardo A, Merino MC, Merino S, Lopez MD, Viejo F, Carboneras M (2003) Influence of reinforcement grade and matrix composition on corrosion resistance of cast aluminium matrix composites (A3xx.x/SiCp) in a humid environment. Mater Corros 54:311–317

    Article  CAS  Google Scholar 

  5. Monticelli C, Zucchi F, Brunoro G, Trabanelli G (1997) Corrosion and corrosion inhibition of alumina particulate/aluminium alloys metal matrix composites in neutral chloride solutions. J Appl Electrochem 27:325–334

    Article  CAS  Google Scholar 

  6. Merino MC, Merino S, Viejo F, Carboneras M, Arrabal R (2005) Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corros Sci 47:1750–1764

    Article  CAS  Google Scholar 

  7. Shahid M (1997) Mechanism of film growth during anodizing of Al-alloy-8090/SiC metal matrix composite in sulphuric acid electrolyte. J Mater Sci 32:3775–3781

    Article  CAS  Google Scholar 

  8. Nayak J, Hebbar K (2008) Corrosion inhibition of T-6 treated 6061 Al–SiC(p) composite in hydrochloric acid. Trans Indian Inst Metals 61:221–224

    Article  CAS  Google Scholar 

  9. Winkler SL, Ryan MP, Flower HM (2004) Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs. Corros Sci 46:893–902

    Article  CAS  Google Scholar 

  10. Tang SW, Hu J, Zhao XH (2011) Corrosion behavior of a cerium-based conversion coating on alumina borate whisker-reinforced AA6061 composite pre-treated by hydrogen fluoride. Corros Sci 53:2636–2644

    Article  CAS  Google Scholar 

  11. Patel AS, Panchal VA, Mudaliar GV, Shah NK (2013) Impedance spectroscopic study of corrosion inhibition of Al-Pure by organic Schiff base in hydrochloric acid. J Saud Chem Soc 17:53–59

    Article  CAS  Google Scholar 

  12. Abdallah M (2004) Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros Sci 46:1981–1996

    Article  CAS  Google Scholar 

  13. Branzoi V, Golgovici F, Branzoi F (2003) Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater Chem Phys 78:122–131

    Article  Google Scholar 

  14. Kumari P, Shetty P, Rao SA (2017) Electrochemical measurements for the corrosion inhibition of mild steel in 1M hydrochloric acid by using an aromatic hydrazide derivative. Arab J Chem 10:653–663

    Article  CAS  Google Scholar 

  15. Kumari P, Shetty P, Rao SA (2015) Corrosion protection properties Of 4-hydroxy-N’-[1E,2E]-3-phenylprop-2-en-1-ylidene] benzohydrazideon mild steel in hydrochloric acid medium. Pro Met Phy Chem Surf 15:1034–1042

    Article  CAS  Google Scholar 

  16. Kumari P, Shetty P, Rao SA, Sunil D (2017) Inhibition behaviour of 2-[(2-Methylquinoline-8-yl)Oxy] acetohydrazide on corrosion of mild steel in hydrochloric acid solution. Trans Indian Inst Met 70:1139–1150

    Article  CAS  Google Scholar 

  17. Pinto GM, Nayak J, Shetty AN (2011) Corrosion inhibition of 6061 Al–15 vol. pct. SiC(p) composite and its base alloy in a mixture of sulphuric acid and hydrochloric acid by 4-(N, N-dimethyl amino) benzaldehyde thiosemicarbazone. Mater Chem Phys 125:628–640

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev Condense Mater B 37:785–789

    Article  CAS  Google Scholar 

  19. Singh P, Ebenso EE, Olasunkanmi LO, Obot IB, Quraishi MA (2016) Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J Phys Chem C 120:3408–3419

    Article  CAS  Google Scholar 

  20. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine-based, pyrimidinefused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120:11598–11611

    Article  CAS  Google Scholar 

  21. Trowsdale AJ, Noble B, Haris SJ, Gibbins ISR, Thomson GE, Wood G (1996) The influence of silicon carbide reinforcement on the pitting behaviour of aluminium. Corros Sci 38:177–191

    Article  CAS  Google Scholar 

  22. Yurt A, Ulutas S, Dal H (2006) Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases. Appl Surf Sci 253:19–925

    Article  CAS  Google Scholar 

  23. Eduok UM, Umoren SA, Udoh AP (2012) Synergistic inhibition effects between leaves and stem extracts of Sida acuta and iodide ion for mild steel corrosion in 1 M H2SO4 solutions. Arab J Chem 5:325–337

    Article  CAS  Google Scholar 

  24. Wang L, Shinohara T, Zhang B (2010) Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. J Alloys Compd 496:500–507

    Article  CAS  Google Scholar 

  25. Li WH, He Q, Zhang S, Pei S, Hou B (2007) Experimental and theoretical investigation of the adsorption behavior of new triazole derivatives as inhibitors for mild steel corrosion in acid media. Electrochim Acta 52:6386–6394

    Article  CAS  Google Scholar 

  26. Charitha BP, Rao P (2017) An ecofriendly approach for corrosion control of 6061 Al-15%(v) SiC(P) composite and its base alloy. Chin J Chem Eng 25:363–372

    Article  CAS  Google Scholar 

  27. Aytac A, Ozmen U, Kabasakaloglu M (2005) Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Mater Chem Phys 89:176–181

    Article  CAS  Google Scholar 

  28. Abdallah M, Fouda AS, El-Nagar DAM, Alfakeer M, Ghoneim MM (2019) Corrosion inhibition of two aluminium silicon alloys in 0.5 M HCl solution by some azole derivatives using electrochemical techniques. Surf Eng Appl Electrochem 55:172–182

    Article  Google Scholar 

  29. Frers MM, Stefenel C, Mayer CT (2016) AC-impedance measurements on aluminium in chloride containing solutions and below the pitting potential. J Appl Electrochem 20:996–999

    Article  Google Scholar 

  30. Mansfeld F, Lin S, Kim K, Shih H (1987) Pitting and surface modification of SiC/Al. Corros Sci 27:997–1000

    Article  CAS  Google Scholar 

  31. Lebrini M, Robert F, Roos C (2010) Inhibition Effect of alkaloids extract from annona squamosa plant on the corrosion of C38 steel in normal hydrochloric acid medium. Int J Electrochem Sci 5:1698–1712

    CAS  Google Scholar 

  32. Xie YJ, Wu J, Che XZ, Chen Y, Huan HW, Deng GJ (2016) Efficient pyrido[1,2-a] benzimidazole formation from 2-aminopyridines and cyclohexanones under metal-free conditions. Green Chem 18:667–671

    Article  CAS  Google Scholar 

  33. Niu L, Yin Y, Guo W, Lu M, Qin R, Chen S (2009) Application of scanning electrochemical microscope in the study of corrosion of metals. J Mater Sci 44:4511–4521

    Article  CAS  Google Scholar 

  34. Larabi L, Harek Y, Benali O, Ghalem S (2005) Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Prog Org Coat 54:256–262

    Article  CAS  Google Scholar 

  35. Yahalom J (1972) The significance of the energy of activation for the dissolution reaction of metal in acids. Corros Sci 12:867–868

    Article  Google Scholar 

  36. Abdel Rehim SS, Magdy AM, Ibrahim KF (1999) 4-Aminoantipyrineas an inhibitor of mild steel corrosion in HCl solution. J Appl Electrochem 29:593–599

    Article  Google Scholar 

  37. Li W, He Q, Zhang S, Pei C, Hou BJ (2008) Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. J Appl Electrochem 38:289–295

    Article  CAS  Google Scholar 

  38. Oguzie EE, Njoku VO, Enenebeaku CK, Akalezi CO, Obi C (2008) Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media. Corros Sci 50:3480–3486

    Article  CAS  Google Scholar 

  39. Wang X, Yang H, Wang F (2010) A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corros Sci 52:1268–1276

    Article  CAS  Google Scholar 

  40. Migahed MA, Mohammed HM, Al-Sabagh AM (2003) Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amide and its ethoxylated derivatives. Mater Chem Phys 80:169–175

    Article  CAS  Google Scholar 

  41. Ashassi-Sorkhabi H, Majidi MR, Seyyedi K (2004) Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution. Appl Surf Sci 225:176–185

    Article  CAS  Google Scholar 

  42. Bentiss F, Traisnel M, Lagrenee M (2001) Influence of 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole on corrosion inhibition of mild steel in acidic media. J Appl Electrochem 31:41–48

    Article  CAS  Google Scholar 

  43. Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199:83–89

    Article  CAS  Google Scholar 

  44. Aylor DM, Moran PJ (1985) Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites. J Electrochem Soc 132:1277–1281

    Article  CAS  Google Scholar 

  45. Ekpe UJ, Ibok UJ, Ita BI, Offiong OE (1995) Inhibitory action of methyl and phenyl thiosemicarbazone derivatives on the corrosion of mild steel in hydrochloric acid. Mater Chem Phys 40:87–93

    Article  CAS  Google Scholar 

  46. Pinto GM, Nayak J, Shetty AN (2011) Adsorption and inhibitor action of 4-(N, N-dimethylamino) benzaldehyde thiosemicarbazone on 6061 Al/SiC composite and its base alloy in sulfuric acid medium. Synth React Inorg Org Nano Met Chem 41:127–140

    CAS  Google Scholar 

  47. Senhaji O, Taouil R, Skalli MK, Bouachrine M, Hammouti B, Hamidi M (2011) Experimental and theoretical study for corrosion inhibition in normal hydrochloric acid solution by some new phosphonated compounds. Int J Electrochem Sci 6:6290–6299

    CAS  Google Scholar 

  48. Zhang W, Hui-Jing L, Wang M, Li-Juan W, Ai-Han Z, Yan-Chao W (2019) Highly effective inhibition of mild steel corrosion in HCl solution by using pyrido[1,2-a] benzimidazoles. New J Chem 43:413–426

    Article  Google Scholar 

  49. Ansari K, Quraishi M, Singh A, Ramkumar S, Obote IB (2016) Corrosion inhibition of N80 steel in 15% HCl by pyrazolone derivatives: electrochemical, surface and quantum chemical studies. RSC Adv 6:24130–24141

    Article  CAS  Google Scholar 

  50. Abdallah M, Gad EA, Sobhi M, Fahemi JH, Alfakeer MM (2019) Performance of tramadol drug as a safe inhibitor for aluminium corrosion in 1 M HCl solution and understanding mechanism of inhibition using DFT. Egypt J Petrol 28:173–181

    Article  Google Scholar 

  51. Zhang K, Xu B, Yang W, Yin X, Liu Y, Chen Y (2015) Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 90:284–295

    Article  CAS  Google Scholar 

  52. Obot IB, Gasem ZM (2014) Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83:359–366

    Article  CAS  Google Scholar 

  53. Dohare P, Chauhan D, Sorour A, Quraishi M (2017) DFT and experimental studies on the inhibition potentials of expired Tramadol drug on mild steel corrosion in hydrochloric acid. Mater Discov 9:30–41

    Article  Google Scholar 

  54. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 10:31793–31874

    Google Scholar 

  55. Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti-Corros Methods Mater 53:277–282

    Article  CAS  Google Scholar 

  56. Carotenuto G, Gallo A, Nicolais L (1994) Degradation of SiC particles in aluminium-based composites. J Mater Sci 29:4967–4974

    Article  CAS  Google Scholar 

  57. Charitha BP, Arunchandran C, Rao P (2017) Enhancement of surface coating characteristics of epoxy resin by dextran: an electrochemical approach. Ind Eng Chem Res 56:1137–1147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Preethi Kumari.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, D., Kumari, P.P., Rao, S.A. et al. Anticorrosion Behaviour of a Hydrazide Derivative on 6061 Al-15%(v) SiC(P) Composite in Acid Medium: Experimental and Theoretical Calculations. J Bio Tribo Corros 6, 59 (2020). https://doi.org/10.1007/s40735-020-00356-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00356-9

Keywords

Navigation