Skip to main content
Log in

A Review on the Assessment of Imidazo[1,2-a]pyridines As Corrosion Inhibitor of Metals

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Imidazo[1,2-a]pyridines find great importance in several commercially available drugs but recently, this derivative has been reported as effective corrosion inhibitors due to their excellent excited state intra-molecular proton transfer which elevates the performances of their adsorption into the metallic surface. In this paper, we have reported a review of some works that investigated the effects of some imidazo[1,2-a]pyridine molecular on corrosion inhibition properties applying different techniques. They reported that the adsorption of this derivative into the steel surface follows the Langmuir isotherm making a strong bond sometimes and linked with physical adsorption another time. The theoretical method and SEM technique have also been reviewed for some molecular inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Verma C, Ebenso EE, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq 266:577

    CAS  Google Scholar 

  2. Mai W, Soghrati S, Buchheit RG (2016) A phase field model for simulating the pitting corrosion. Corros Sci 110:157

    CAS  Google Scholar 

  3. Kıcır N, Tansuğ G, Erbil M, Tüken T (2016) Investigation of ammonium (2, 4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel. Corros Sci 105:88

    Google Scholar 

  4. Nazeer AA, Madkour M (2018) Potential use of smart coatings for corrosion protection of metals and alloys: a review. J Mol Liq 253:11

    CAS  Google Scholar 

  5. Lavanya K, Saranya J, Chitra S (2018) Recent reviews on quinoline derivative as corrosion inhibitors. Corros Rev 36(4):365

    CAS  Google Scholar 

  6. Bammou L, Belkhaouda M, Salghi R, Benali O, Zarrouk A, Zarrok H, Hammouti B (2014) Corrosion inhibition of steel in sulfuric acidic solution by the chenopodium ambrosioides extracts. J Assoc Arab Univ Basic Appl Sci 16(1):83

    Google Scholar 

  7. Daoud D, Douadi T, Issaadi S, Chafaa S (2014) Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci 79:50

    CAS  Google Scholar 

  8. https://insights.globalspec.com/article/2340/annual-global-cost-of-corrosion-2-5-trillion

  9. https://www.finances.gov.ma/Docs/depf/2018/summary_ref_plf2018.pdf

  10. Kharbach Y, Qachchachi FZ, Haoudi A, Tourabi M, Zarrouk A, Jama C, Olasunkanmi LO, Ebenso EE, Bentiss F (2017) Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies. J Mol Liq 246:302

    CAS  Google Scholar 

  11. Al Hamzi AH, Zarrok H, Zarrouk A, Salghi R, Hammouti B, Al-Deyab SS, Bouachrine M, Amine A, Guenoun F (2013) The role of acridin-9(10H)-one in the inhibition of carbon steel corrosion: thermodynamic, electrochemical and DFT studies. Intern J Electrochem Sci 8(2):2586

    CAS  Google Scholar 

  12. Hegazy MA, El-Etre AY, El-Shafaie M, Berry KM (2016) Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J Mol Liq 214:347

    CAS  Google Scholar 

  13. El-Hajjaji F, Belkhmima RA, Zerga B, Sfaira M, Taleb M, EbnTouhami M, Hammouti B, Al-Deyab SS, Ebenso E (2014) Temperature performance of a thionequinoxaline compound as mild steel corrosion inhibitor in hydrochloric acid medium. Int J Electrochem Sci 9:4721

    Google Scholar 

  14. Salghi R, Ben Hmamou D, Benali O, Jodeh S, Warad I, Hamed O, Ebenso EE, Oukacha A, Tahrouch S, Hammouti B (2015) Study of the corrosion inhibition effect of pistachio essential oils in 0.5 M H2SO4. Int J Electrochem Sci 10:8403

    CAS  Google Scholar 

  15. El Guerraf A, Titi A, Cherrak K, Mechbal N, El Azzouzi M, Touzani R, Hammouti B, Lgaz H (2018) The synergistic effect of chloride ion and 1,5-diaminonaphthalene on the corrosion inhibition of mild steel in 0.5 M sulfuric acid: experimental and theoretical insights. Surf Interfaces 13:168

    Google Scholar 

  16. Bashir S, Sharma V, Lgaz H, Chung M, Ill, Singh A, Kumar A (2018) The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J Mol Liq 263:454

    CAS  Google Scholar 

  17. Fouda AS, Shalabi K, Elmogazy H (2014) Corrosion inhibition of α-brass in HNO3 by indole and 2-oxyindole. J Mater Environ Sci 5(6):1691

    CAS  Google Scholar 

  18. Ouakki M, Rbaa M, Galai M, Lakhrissi B, Rifi EH, Cherkaoui M (2018) Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid. J Bio-Tribo Corros 4:35

    Google Scholar 

  19. Karthik R, Muthukrishan P, Chen SM, Jeyaprabha B, Prakash P (2015) Anti-corrosion inhibition of mild steel in 1M hydrochloric acid solution by using tiliacoraaccuminata leaves extract. Int J Electrochem Sci 10:3707

    CAS  Google Scholar 

  20. Ghibate R, Sabry F, Kharbach Y, KandriRodi Y, Skalli MK, Haoudi A, Senhaji O, Touzani M, Taouil R, Aouniti A, Hammouti B (2015) Valuation of surfactant phosphonates synthesized in the protection of metal surfaces against corrosion of mild steel in 0.5M H2SO4 media. Int J Eng Res Appl 5(12):22

    Google Scholar 

  21. Verma C, Ebenso EE, Quraishi MA (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403

    CAS  Google Scholar 

  22. Ghazoui A, Zarrouk A, Bencaht N, Salghi R, Assouag M, El Hezzat M, Guenbour A, Hammouti B (2014) New possibility of mild steel corrosion inhibition by organic heterocyclic compound. J Chem Pharm Res 6(2):704

    Google Scholar 

  23. Bedair MA, El-Sabbah MMB, Fouda AS, Elaryian HM (2017) Synthesis,electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium. Corros Sci 128:54

    CAS  Google Scholar 

  24. Petersen A, Rodrigues SR, Dalmoro V, Falcade T, Tamborim SM (2017) Anthocyanins as a corrosion inhibitor for 2024-T3 aluminum alloys: a study of electrochemical behavior. Int J Corros Scale Inhib 6(3):29

    Google Scholar 

  25. Negm NA, El Hashash MA, Abd-Elaal A, Tawfik SM, Gharieb A (2018) Amide type nonionic surfactants: synthesis and corrosion inhibition evaluation against carbon steel corrosion in acidic medium. J Mol Liq 256:574

    CAS  Google Scholar 

  26. Alaoui K, El Kacimi Y, Galai M, Dahmani K, Touir R, El Harfi A, EbnTouhami M (2016) Poly(1-phenylethene): as a novel corrosion inhibitor for carbon steel/hydrochloric acid interface. Anal Bioanal Electrochem 8(7):830

    CAS  Google Scholar 

  27. Galai M, Rbaa M, El Kacimi Y, Ouakki M, Dkhirech N, Touir R, Lakhrissi B, EbnTouhami M (2017) Anti-corrosion properties of some triphenylimidazole substituted compounds in corrosion inhibition of carbon steel in 1.0 M hydrochloric acid solution. Anal Bioanal Electrochem 9:80

    CAS  Google Scholar 

  28. Abd El-Raouf M, Khamis EA, Abou Kana MTH, Negm NA (2018) Electrochemical and quantum chemical evaluation of new bis (coumarins) derivatives as corrosion inhibitors for carbon steel corrosion in 0.5 M H2SO4. J Mol Liq 255:341

    CAS  Google Scholar 

  29. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120(21):11598

    CAS  Google Scholar 

  30. Shainy KM, Ammal PR, Unni KN, Benjamin S, Joseph A (2016) Surface interaction and corrosion inhibition of mild steel in hydrochloric acid using pyoverdine, an eco-friendly biomolecule. J Bio-Tribo Corros 2:20

    Google Scholar 

  31. Jiang L, Qiang Y, Lei Z, Wang J, Qin Z, Xiang B (2018) Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations. J Mol Liq 255:53

    CAS  Google Scholar 

  32. Qiao L, Wang Y, Wang W, Mohedano M, Gong C, Gao J (2014) The preparation and corrosion performance of self-assembled monolayers of stearic acid and MgO layer on pure magnesium. Mater Trans 55(8):1337

    CAS  Google Scholar 

  33. Ruan L, Zhang Z, Huang X, Lyu Y, Wen Y, Shang W, Wu L (2017) Evaluation of corrosion inhibition of two schiff bases self-assembled films on carbon steel in 0.5 M HCl. Int J Electrochem Sci 12:103

    CAS  Google Scholar 

  34. Shaban A, Felhosi I, Telegdi J (2017) Laboratory assessment of inhibition efficiency and mechanism of inhibitor blend (P22SU) on mild steel corrosion in high chloride containing water. Int J Corros Scale Inhib 6(3):262

    Google Scholar 

  35. He X, Jiang Y, Li C, Wang W, Hou B, Wu L (2014) Inhibition properties and adsorption behavior of imidazole and 2-phenyl-2-imidazoline on AA5052 in 1.0 M HCl solution. Corros Sci 83:124

    CAS  Google Scholar 

  36. Ansari FA, Verma C, Siddiqui YS, Ebenso EE, Quraishi MA (2018) Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: a review. Int J Corros Scale Inhib 7(2):126

    Google Scholar 

  37. Arellanes-Lozada P, Olivares-Xometl O, Likhanova NV, Lijanova IV, Vargas-García JR, Hernández-Ramírez RE (2018) Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. J Mol Liq 265:151

    CAS  Google Scholar 

  38. Umoren SA, Solomon MM (2015) Effect of halide ions on the corrosion inhibition efficiency of different 4 organic species—a review. J Ind Eng Chem 21:81

    CAS  Google Scholar 

  39. Bousskri A, Anejjar A, Messali M, Salghi R, Benali O, Karzazi Y, Jodeh S, Zougagh M, Ebenso EE, Hammouti B (2015) Corrosion inhibition of carbon steel in aggressive acidic media with 1-(2-(4-chlorophenyl)-2-oxoethyl)pyridazinium bromide. J Mol Liq 211:1000

    CAS  Google Scholar 

  40. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA (2018) Adsorption characteristics of green 5-arylaminomethylene pyrimidine2,4,6-triones on mild steel surface in acidic medium: experimental and computational approach. Results Phys 8:657

    Google Scholar 

  41. Saddik R, Gaadaoui A, Hamal A, Zarrouk A, Touzani R, Benchat N (2014) Synthesis, antibacterial and antifungal activity of some new imidazo[1,2-a]pyridine derivatives. Der Pharm Lett 6(4):343

    CAS  Google Scholar 

  42. El-Awady AR, Semreen MH, Saber MM, Cyprian F, Menon V, Al-Tel TH (2016) Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells. DNA Repair 37:1

    CAS  Google Scholar 

  43. Elaatiaoui A, Rokni Y, Mohammed K, Asehraou A, Chelfi T, Saddik R, Oussaid A, Villalgordo JM, Abouricha S, El Mahi B, Oussaid A, Zarrouk A, Benchat N (2015) Synthesis, spectroscopicand antimicrobial activityof some new 7-methyl-2- phenylimidazo[1,2-a]pyridin-3-amine derivatives, J Mater Environ Sci 6(8):2083

    CAS  Google Scholar 

  44. Gao M, Wang M, Zheng QH (2016) Synthesis of carbon-11-labeled imidazopyridine- and purinethioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1. Bioorg Med Chem Lett 26:1371

    CAS  Google Scholar 

  45. Li C, Chen L, Steinhuebel D, Goodman A (2016) Rapid construction of imidazopyridines from ortho-haloaminopyridines. Tetrahedron Lett 57:2708

    CAS  Google Scholar 

  46. Ramya K, Mohan R, Anupama KK, Joseph A (2015) Electrochemical and theoretical studies on the synergistic interaction and corrosion inhibition of alkyl benzimidazoles and thiosemicarbazide pair on mild steel in hydrochloric acid. Mater Chem Phys 149:632

    Google Scholar 

  47. Yüce AO, Telli E, Mert BD, Kardaş G, Yazıcı B (2016) Experimental and quantum chemical studies on corrosion inhibition effect of 5,5 diphenyl 2-thiohydantoin on mild steel in HCl solution. J Mol Liq 218:384

    Google Scholar 

  48. Salarvand Z, Amirnasr M, Talebian M, Raeissi K, Meghdadi S (2017) Enhanced corrosion resistance of mild steel in 1M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros Sci 114:133

    CAS  Google Scholar 

  49. Murulana LC, Kabanda MM, Ebenso EE (2015) Experimental and theoretical studies on the corrosion inhibition of mild steel by some sulphonamides in aqueous HCl. RSC Adv 5:28743

    CAS  Google Scholar 

  50. Obot IB, Macdonald DD, Gasem ZM (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. part 1: an overview. Corros Sci 99:1

    CAS  Google Scholar 

  51. Savas K, Tüzün B, Kaya C, Obot IB (2016) Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J Taiwan Inst Chem Eng 58:528

    Google Scholar 

  52. Kokalj A (2012) On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem Phys 393:1

    CAS  Google Scholar 

  53. Topal E, Gece G (2017) Untangling the inhibition effects of aliphatic amines on silver corrosion: a computational study. Chem J Moldova 12(2):64

    CAS  Google Scholar 

  54. Saha SKR, Ghosh P, Hens A, Murmu NC, Banerjee P (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E 66:332

    CAS  Google Scholar 

  55. Singh A, Ansari KR, Haque J, Dohare P, Lgaz H, Salghi R, Quraishi MA (2018) Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: experimental and quantum chemical study. J Taiwan Inst Chem Eng 82:233

    CAS  Google Scholar 

  56. Quader MA, Ahmed S, Ghazilla RAR, Ahmed S, Dahari M (2015) A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew Sustain Energy Rev 50:594

    CAS  Google Scholar 

  57. Swathi NP, Alva VDP, Samshuddin S (2017) A review on 1,2,4-triazole derivatives as corrosion inhibitors. J Bio-Tribo Corros 3:42

    Google Scholar 

  58. Loto RT, Tobilola O (2018) Corrosion inhibition properties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide on mild steel in dilute acid solutions. J King Saudi Univ 30:384

    Google Scholar 

  59. Edison TNJI, Atchudan R, Pugazhendhi A, Lee YR, Sethuraman MG (2018) Corrosion inhibition performance of spermidine on mild steel in acid media. J Mol Liq 264:483

    CAS  Google Scholar 

  60. Mishra A, Verma C, Chauhan S, Quraishi MA, Ebenso EE, Srivastava V (2018) Synthesis, characterization, and corrosion inhibition performance of 5-aminopyrazole carbonitriles towards mild steel acidic corrosion. J Bio-Tribo Corros 4:53

    Google Scholar 

  61. Praveen BM, Prasanna BM, Hebbar N, Kumar Shivakeshava P, Jagadeesh MR (2018) Experimental and theoretical studies on inhibition efect of the praziquantel on mild steel corrosion in 1 M HCl. J Bio-Tribo Corros 4:21

    Google Scholar 

  62. Mohan R, Joseph A (2016) Corrosion protection of mild steel in hydrochloric acid up to 313 K using propyl benzimidazole: electroanalytical, adsorption and quantum chemical studies. Egypt J Pet 27:11

    Google Scholar 

  63. Reddy CM, Sanketi BD, Kumar SN (2016) Corrosion inhibition of mild steel by Capsicum annuum fruit paste. Perspect Sci 8:603

    Google Scholar 

  64. Sivakumar S, Raja AS, Sathiyabama J, Prathipa V (2014) Spectroscopic methods used for analyzing protective film formed by l-Histidine on carbon steel. Int J Pharm Drug Anal 2(7):601

    Google Scholar 

  65. Raja As, Sathiyabama J, Venkatesan R, Prathipa V (2014) Corrosion control of carbon steel by eco-friendly inhibitor l-cysteine–Zn2+ system in aqueous medium. J Chem Biol Phys Sci 4(4):3182

    CAS  Google Scholar 

  66. Hamani H, Douadi T, Daoud D, AlNoaimi M, Rikkouh RA, Chafaa S (2017) 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J Electroanal Chem 801:425

    CAS  Google Scholar 

  67. Tezeghdenti M, Dhouibi L, Etteyeb N (2015) Corrosion inhibition of carbon steel in 1 M sulphuric acid solution by extract of eucalyptus globulus leaves cultivated in tunisia arid zones. J Bio-Tribo Corros 1:16

    Google Scholar 

  68. Perumal S, Muthumanickam S, Elangovan A, Karthik R, Sayeekannan R, Mothilal KK (2017) Bauhinia tomentosa leaves extract as green corrosion inhibitor for mild steel in 1M HCl medium. J Bio-Tribo Corros 3:13

    Google Scholar 

  69. El-Deeb MM, Sayyah SM, Abd El-Rehim SS, Mohamed SM (2013) Corrosion inhibition of aluminum with a series of aniline monomeric surfactants and their analog polymers in 0.5 M HCl solution Part II: 3-(12-sodiumsulfonate dodecyloxy) aniline and its analog polymer. Arab J Chem 8(4):527

    Google Scholar 

  70. Bouanis M, Tourabi M, Nyassi A, Zarrouk A, Jama C, Bentiss F (2016) Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: gravimetric, electrochemical and XPS studies. Appl Surf Sci 389:952

    CAS  Google Scholar 

  71. Branzoi F, Pahom Z, Nechifor G (2018) Corrosion protection of new composite polymer coating for carbon steel in sulfuric acid medium by electrochemical methods. J Adhes Sci Technol 32(21):2364

    CAS  Google Scholar 

  72. El Aoufir Y, Lgaz H, Bourazmi H, Kerroum Y, Ramli Y, Guenbour A, Salghi R, El-Hajjaji F, Hammouti B, Oudda H (2016) Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: electrochemical, DFT and Monte Carlo simulations studies. J Mater Environ Sci 7(12):4330

    CAS  Google Scholar 

  73. Faustin M, Maciuk A, Salvin P, Roos C, Lebrini M (2015) Corrosion inhibition of C38 steel by alkaloids extract of Geissospermumlaeve in 1M hydrochloric acid: electrochemical and phytochemical studies. Corros Sci 92:287

    CAS  Google Scholar 

  74. Yıldız R (2015) An electrochemical and theoretical evaluation of 4,6-diamino-2- pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros Sci 90:544

    Google Scholar 

  75. Finsgar M, Petovar B, Xhanari K, Maver U (2016) The corrosion inhibition of certain azoles on steel in chloride media: electrochemistry and surface analysis. Corros Sci 111:370

    CAS  Google Scholar 

  76. Verma C, Quraishi MA, Ebenso EE, Bahadur I (2018) A green and sustainable approach for mild steel acidic corrosion inhibition using leaves extract: experimental and DFT studies. J Bio-Tribo Corros 4:33

    Google Scholar 

  77. Yilmaz N, Fitoz A, Ergun U, Emregul KC (2016) A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corros Sci 111:110

    CAS  Google Scholar 

  78. Solmaz R (2014) Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene)rhodanine. Corros Sci 79:169

    CAS  Google Scholar 

  79. Daoud D, Douadi T, Hamani H, Chafaa S, AlNoaimi M (2015) Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study. Corros Sci 94:21

    CAS  Google Scholar 

  80. Saha SKR, Dutta A, Ghosh P, Sukulc D, Banerjee P (2015) Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys Chem Chem Phys 17:5679

    CAS  Google Scholar 

  81. Gerengi H, Mielniczek M, Gece G, Solomon MM (2016) Experimental and quantum chemical evaluation of 8-hydroxyquinoline as a corrosion inhibitor for copper in 0.1 M HCl. Ind Eng Chem Res 55(36):9614

    CAS  Google Scholar 

  82. Gerengi H, Ugras HI, Solomon MM, Umoren SA, Kurtay M, Atar N (2016) Synergistic corrosion inhibition effect of 1-ethyl-1- methylpyrrolidiniumtetrafluoroborate and iodide ions for low carbon steel in HCl solution. J Adhes Sci Technol 30(21):2383

    CAS  Google Scholar 

  83. Kavimani V, Prakash KS, Rajesh R, Rammasamy D, BabuSelvaraj N, Yang T, Prabakaran B, Jothi S (2017) Electro deposition of r-GO/SiCnano-composites on magnesium and its corrosion behavior in aqueous electrolyte. Appl Surf Sci 424:63

    CAS  Google Scholar 

  84. Gerengi H, Solomon MM, Öztürk S, Yıldırım A, Gec G, Kaya E (2018) Evaluation of the corrosion inhibiting efficacy of a newly synthesized nitrone against St37 steel corrosion in acidic medium: experimental and theoretical approaches. Mater Sci Eng C 93:539

    CAS  Google Scholar 

  85. Yadav M, Gope L, Kumari N, Yadav P (2016) Corrosion inhibition performance of pyranopyrazole derivatives for mild steel in HCl solution: gravimetric, electrochemical and DFT studies. J Mol Liq 216:78

    CAS  Google Scholar 

  86. Anupama KK, Ramya K, Joseph A (2016) Electrochemical and computational aspects of surface interaction and corrosion inhibition of mild steel in hydrochloric acid by Phyllanthusamarus leaf extract (PAE). J Mol Liq 216:146

    CAS  Google Scholar 

  87. Elmsellem H, Basbas N, Chetouani A, Aouniti A, Radi S, Messali M, Hammouti B (2014) Quantum chemical studies and corrosion inhibitive properties of mild steel by some pyridine derivatives in 1 N HCl solution. Port Electrochim Acta 32(2):77

    Google Scholar 

  88. Tan B, Zhang S, Qiang Y, Guo L, Feng L, Liao C, Xu Y, Chen S (2018) A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid. J Colloid Interface Sci 526:268

    CAS  Google Scholar 

  89. Han P, Li W, Tian H, Gao X, Ding R, Xiong C, Song L, Zhang X, Wang W, Chen C (2018) Comparison of inhibition performance of pyridine derivatives containing hydroxyl and sulfhydryl groups: experimental and theoretical calculations. Mater Chem Phys 214:345

    CAS  Google Scholar 

  90. Guo L, Ren X, Zhou Y, Xu S, Gong Y, Zhang S (2017) Theoretical evaluation of the corrosion inhibition performance of 1,3-thiazole and its amino derivatives. Arab J Chem 10:121

    CAS  Google Scholar 

  91. Gupta SR, Mourya P, Singh MM, Singh VP (2017) Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system. J Mol Struct 1137:240

    CAS  Google Scholar 

  92. Han P, Chen C, Li W, Yu H, Xu Y, Ma L, Zheng Y (2018) Synergistic effect of mixing cationic and nonionic surfactants on corrosion inhibition of mild steel in HCl: experimental and theoretical investigations. J Colloid Interface Sci 516:398

    CAS  Google Scholar 

  93. Ogunbadejo AS, Oladele OE, Olajide JL, Obolo OE, Olusegun SJ, Olubambi PA, Aribo S (2018) Flow-accelerated corrosion inhibition of steel in hydrochloric acid by hexamethylenetetramine: gravimetric, density functional theory and multiphysical studies. J Bio-Tribo Corros 4:70

    Google Scholar 

  94. Hayaoui M, Drissi M, Fahim M, Salim R, Rais Z, Mouffarih S, Baba MF, El Hajjaji F, Zarrouk A, Taleb M (2017) Benzenamine derivative as corrosion inhibitor of carbon steel in hydrochloric acid solution: electrochemical and theoretical studies. J Mater Environ Sci 8(5):1877

    CAS  Google Scholar 

  95. Dyminska L (2015) Review Imidazopyridines as a source of biological activity and their pharmacological potentials—infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials. Bioorg Med Chem 23:6087

    CAS  Google Scholar 

  96. Devi N, Jana AK, Singh V (2018) Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala Int J Mod Sci 4:164

    Google Scholar 

  97. El-Sayed WM, Hussin W, Al-Faiyz YS, Ismail MA (2013) The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo[1,2-a] pyridine derivatives. Eur J Pharm 715:212

    CAS  Google Scholar 

  98. Rao AVS, Vardhan MVPSV, Reddy NVS, Reddy TS, Shaik SP, Bagul C, Kamal A (2016) Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIa inhibitors. Bioorg Chem 69:19

    Google Scholar 

  99. Chen G, Liu Z, Zhang Y, Shan X, Jiang L, Zhao Y, He W, Feng Z, Yang S, Liang G (2013) Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med Chem Lett 4(1):69

    Google Scholar 

  100. Sun W, Jiang W, Zhu G, Li Y (2018) Magnetic Cu0 @HAP@g-Fe2O3 nanoparticles: an efficient catalyst for one-pot three-component reaction for the synthesis of imidazo[1,2-a] pyridines. J Organomet Chem 873:91

    CAS  Google Scholar 

  101. Yang Y, Zhang Y, Yang LY, Zhao L, Si L, Zhang H, Liu Q, Zhou J (2017) Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: synthesis, SAR study, and biological activity. Bioorg Chem 70:126

    CAS  Google Scholar 

  102. Dyminska L (2015) Imidazopyridines as a source of biological activity and their pharmacological potentials—infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials. Bioorg Med Chem 23:6087

    CAS  Google Scholar 

  103. Kuthyala S, Nagaraja GK, Sheik S, Hanumanthappa M, Kumar SM (2019) Synthesis of imidazo [1, 2-a]pyridine-chalcones as potent inhibitors against A549 cell line and their crystal studies. J Mol Struct 1177:381

    CAS  Google Scholar 

  104. Chang Q, Liu Z, Liu P, Yu L, Sun P (2017) Visible-light-induced regioselectivecyanomethylation of imidazopyridines and its application in drug synthesis. J Org Chem 82(10):5391

    CAS  Google Scholar 

  105. Ravi C, Reddy NNK, Pappula V, Samanta S, Adimurthy S (2016) Copper-catalyzed three-component system for arylsulfenylation of imidazopyridines with elemental sulfur. J Org Chem 81(20):9964

    CAS  Google Scholar 

  106. Huo C, Tang J, Xie H, Wang Y, Dong J (2016) CBr4 mediated oxidative C–N bond formation: applied in the synthesis of Imidazo[1,2-α]pyridines and Imidazo[1,2-α]pyrimidines. Org Lett 18(5):1016

    CAS  Google Scholar 

  107. Humphries AC, Gancia E, Gilligan MT, Goodacre S, Hallett D, Merchant KJ, Thomas SR (2006) 8-Fluoroimidazo[1,2-a]pyridine: synthesis, physicochemical properties and evaluation as a bioisosteric replacement for imidazo[1,2-a]pyrimidine in an allosteric modulator ligand of the GABAA receptor. Bioorg Med Chem Lett 16(6):1518

    CAS  Google Scholar 

  108. Salim R, Ech-chihbi E, Oudda H, ELAoufir Y, El-Hajjaji F, Elaatiaoui A, Oussaid A, Hammouti B, Elmsellem H, Taleb M (2016) The inhibition effect of imidazopyridine derivatives on C38 steel in hydrochloric acid solution. Der Pharm Chem 8(13):200

    CAS  Google Scholar 

  109. Ghazoui A, Saddik R, Hammouti B, Zarrouk A, Benchat N, Guenbour M, Al-Deyab SS, Warad I (2013) Inhibitive effect of imidazopyridine derivative towards corrosion of C38 steel in hydrochloric acid solution. Res Chem Intermed 39:2369

    CAS  Google Scholar 

  110. Ben Hmamou D, Salghi R, Zarrouk A, Zarrok H, Hammouti B, Al-Deyab SS, El Assyry A, Benchat N, Bouachrine M (2013) Electrochemical and gravimetric evaluation of 7-methyl-2- phenylimidazo[1,2-α]pyridine of carbon steel corrosion in phosphoric acid solution. Int J Electrochem Sci 8:11526

    CAS  Google Scholar 

  111. Salghi R, Anejjar A, Benali O, Al-Deyab SS, Zarrouk A, Errami M, Hammouti B, Benchat N (2014) Inhibition effect of 3-bromo-2-phenylimidazol[1,2- α]pyridine towards C38 steel corrosion in 0.5M H2SO4 solution. Int J Electrochem Sci 9:3087

    Google Scholar 

  112. Anejjar A, Salghi R, Zarrouk A, Zarrok H, Benali O, Hammouti B, Al-Deyab SS, Benchat N, Saddik R (2015) Investigation of inhibition by 6-bromo-3-nitroso-2- phenylimidazol[1,2-a]pyridine of the corrosion of C38 steel in 1 M HCl. Res Chem Intermed 41(2):913

    CAS  Google Scholar 

  113. Bouhrira K, Ouahiba F, Zerouali D, Hammouti B, Zertoubi M, Benchat N (2010) The inhibitive effect of 2-phenyl-3-nitroso-imidazo [1, 2-a]pyridine on the corrosion of steel in 0.5 M HCl acid solution. J Chem 7(S1):S35

    CAS  Google Scholar 

  114. Ech-chihbi E, Salim R, Oudda H, Elaatiaoui A, Rais Z, Oussaid A, El Hajjaji F, Hammouti B, Elmsellem H, Taleb M (2016) Effect of some imidazopyridine compounds on carbon steel corrosion in hydrochloric acid solution. Der Pharm Chem 8(13):214

    CAS  Google Scholar 

  115. Ghazoui A, Saddik R, Benchat N, Hammouti B, Guenbour M, Zarrouk A, Ramdani M (2012) The role of 3-amino-2-phenylimidazo[1,2-a]pyridine as corrosion inhibitor for C38 steel in 1M HCl. Der Pharm Chem 4(1):352

    Google Scholar 

  116. Salim R, Elaatiaoui A, Benchat N, Ech-chihbi E, Rais Z, Oudda H, El Hajjaji F, ElAoufir Y, Taleb M (2017) Corrosion behavior of a smart inhibitor in hydrochloric acid molar: experimental and theoretical studies. J Mater Environ Sci 8(10):3747

    CAS  Google Scholar 

  117. Ghosal PS, Gupta AK (2017) Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J Mol Liq 225:137

    CAS  Google Scholar 

  118. Kharchouf S, Majidi L, Bouklah M, Hammouti B, Bouyanzer A, Aouniti A (2014) Effect of three 2-allyl-p-mentha-6,8-dien-2-ols on inhibition of mild steel corrosion in 1 M HCl. Arab J Chem 7(5):680

    CAS  Google Scholar 

  119. Khadom AA, Abd AN, Ahmed NA (2018) Potassium iodide as a corrosion inhibitor of mild steel in hydrochloric acid: kinetics and mathematical studies. J Bio-Tribo Corros 4:17

    Google Scholar 

  120. El-Hajjaji F, Messali M, Aljuhani A, Aouad MR, Hammouti B, Belghiti ME, Chauhan DS, Quraishi MA (2018) Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acidmedium: electrochemical andmolecular dynamics simulation studies. J Mol Liq 249:997

    CAS  Google Scholar 

  121. Ech-chihbi E, Belghiti ME, Salim R, Oudda H, Taleb M, Benchat N, Hammouti B, El-Hajjaji F (2017) Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0M HCl solution. Surf Interfaces 9:206

    CAS  Google Scholar 

  122. Alaoui KI, Ouazzani F, Kandrirodi Y, Azaroual AM, Rais Z, Baba MF, Taleb M, Chetouani A, Aouniti A, Hammouti B (2016) Effect of some Benzimidazolone compounds on C38 steel corrosion in hydrochloric acid solution. J Mater Environ Sci 7(1):244

    Google Scholar 

  123. El-Hajjaji F, Belghiti ME, Hammouti B, Jodeh S, Hamed O, Lgaz H, Salghi R (2018) Adsorption and corrosion inhibition effect of 2-mercaptobenzimidazole (Surfactant) on a carbon steel surface in an acidic medium: experimental and monte carlo simulations. Port Electrochim Acta 36(3):197

    CAS  Google Scholar 

  124. El-Katori EE, Al Angari YM (2018) Electrochemical and theoretical evaluation on the corrosion inhibition of carbon steel by organic selenides in acidic medium. Int J Electrochem Sci 13:4319

    CAS  Google Scholar 

  125. Zarrouk A, Hammouti B, Lakhlifi T, Traisnel M, Vezin H, Bentiss F (2014) New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies. Corros Sci 90:572

    Google Scholar 

  126. Titi A, Mechbal N, El Guerraf A, El Azzouzi M, Touzani R, Hammouti B, Chung IM, Lgaz H (2018) Experimental and theoretical studies on inhibition of carbon steel corrosion by 1,5-diaminonaphthalene. J Bio-Tribo Corros 4:22

    Google Scholar 

  127. Yousefi A, Aslanzadeh SA, Akbar J (2018) Experimental and DFT studies of 1-methylimidazolium trinitrophenoxide as modifier for corrosion inhibition of SDS for mild steel in hydrochloric acid. Anti-Corros Methods Mater 65(1):107

    CAS  Google Scholar 

  128. Louadi YE, Abrigach F, Bouyanzer A, Touzani R, El Assyry A, Zarrouk A, Hammouti B (2017) Theoretical and experimental studies on the corrosion inhibition potentials of two tetrakispyrazole derivatives for mild steel in 1.0 M HCl. Port Electrochim Acta 35(3):159

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, R., Ech-chihbi, E., Oudda, H. et al. A Review on the Assessment of Imidazo[1,2-a]pyridines As Corrosion Inhibitor of Metals. J Bio Tribo Corros 5, 14 (2019). https://doi.org/10.1007/s40735-018-0207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-018-0207-3

Keywords

Navigation