Skip to main content

Advertisement

Log in

Effect of Algal Cells on Water Pollution Control

  • Biology and Pollution (R Boopathy and H Yu, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of algae for remediation of toxic pollutants seems to be promising since they also provide some advantages such as the production of valuable products and their capability to capture CO2 during the photosynthesis, which potentially decrease greenhouse gas emission. This paper reviews the evidence for highlighting the effectiveness of the use of living or non-living algal cells for treating polluted waters.

Recent Findings

Removal efficiency and sorption capacity of algal non-living cells are higher than in living cells because of cell membrane disruption (leading to enhancement of intracellular pollutants binding) and the improvement of specific surface area. For the kinetic and isotherm modeling, there is no single powerful model for a wide range of pollutants and type of algae, indicating that the mechanism is quite specific depending on the type of algae, type of pollutants, and environmental conditions. The removal mechanism of pollutants by living and non-living algae can be considered as an exothermic reaction and physical sorption from many published reports.

Summary

The use of non-living cells was more effective compared to living cells for a wide range of pollutants since the non-living cells performed better removal efficiency and sorption capacity as well as easy to handle. This review is useful to pave a good strategy for designing a greener technology for future environmental pollutants remediation particularly within the domain of algal-based technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rangabhashiyam S, Balasubramanian P. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresour Technol Rep. 2019;5:261–79.

    Article  Google Scholar 

  2. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ. 2020;704:135303.

    Article  CAS  Google Scholar 

  3. Al Farraj DA, Elshikh MS, Al Khulaifi MM, Hadibarata T, Yuniarto A, Syafiuddin A. Biotransformation and detoxification of antraquione dye green 3 using halophilic Hortaea sp. Int Biodeterior Biodegradation. 2019;140:72–7.

    Article  Google Scholar 

  4. Al Farraj DA, Hadibarata T, Yuniarto A, Alkufeidy RM, Alshammari MK, Syafiuddin A. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess Biosyst Eng. 2020;43(12):2305–14.

    Article  Google Scholar 

  5. Al Farraj DA, Hadibarata T, Yuniarto A, Syafiuddin A, Surtikanti HK, Elshikh MS, et al. Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess Biosyst Eng. 2019;42(6):963–9.

    Article  Google Scholar 

  6. Hadibarata T, Syafiuddin A, Al-Dhabaan FA, Elshikh MS. Rubiyatno. Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess Biosyst Eng. 2018;41(5):621–32.

    Article  CAS  Google Scholar 

  7. Syafiuddin A, Fulazzaky MA, Salmiati S, Kueh ABH, Fulazzaky M, Salim MR. Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review. Nano Env Engg. 2020;5(1):1–18.

    CAS  Google Scholar 

  8. Syafiuddin A, Boopathy R, Hadibarata T. Challenges and solutions for sustainable groundwater usage: pollution control and integrated management. Current Pollution Reports. 2020;6(4):310–27.

    Article  CAS  Google Scholar 

  9. Syafiuddin A, Fulazzaky MA. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnology Reports. 2021;29:e00573.

    Article  Google Scholar 

  10. Bangaraiah P, Peele KA, Venkateswarulu TC. Removal of lead from aqueous solution using chemically modified green algae as biosorbent: optimization and kinetics study. Int J Environ Sci Technol (Tehran). 2021;18(2):317–26.

    Article  CAS  Google Scholar 

  11. Rajamohan N, Senthil Kumar P, Rajasimman M, Qasmi FA. Treatment of methanol industry effluent using algal biomass, Gelidium omanense- kinetic modeling. Chem Eng J Adv. 2021;5:100068.

    Article  Google Scholar 

  12. Yang X, Zhao Z, Zhang G, Hirayama S, Nguyen BV, Lei Z, et al. Insight into Cr(VI) biosorption onto algal-bacterial granular sludge: Cr(VI) bioreduction and its intracellular accumulation in addition to the effects of environmental factors. J Hazard Mater. 2021;414:125479.

    Article  CAS  Google Scholar 

  13. Gu S, Boase EM, Lan CQ. Enhanced Pb(II) removal by green alga Neochloris oleoabundans cultivated in high dissolved inorganic carbon cultures. Chem Eng J. 2021;416:128983.

    Article  CAS  Google Scholar 

  14. Nagarajan D, Kusmayadi A, Yen H-W, Dong C-D, Lee D-J, Chang J-S. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresour Technol. 2019;289:121718.

    Article  CAS  Google Scholar 

  15. Urrutia C, Yañez-Mansilla E, Jeison D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019;43:101659.

    Article  Google Scholar 

  16. Leong YK, Chang J-S. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 2020;303:122886.

    Article  CAS  Google Scholar 

  17. Mohammadi M, Mowla D, Esmaeilzadeh F, Ghasemi Y. Enhancement of sulfate removal from the power plant wastewater using cultivation of indigenous microalgae: stage-wise operation. J Env Chem Eng. 2019;7(1):102870.

    Article  CAS  Google Scholar 

  18. Zhang Y, Xiong Z, Yang L, Ren Z, Shao P, Shi H, et al. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Res. 2019;166:115076.

    Article  CAS  Google Scholar 

  19. Zhang C, Wang X, Ma Z, Luan Z, Wang Y, Wang Z, et al. Removal of phenolic substances from wastewater by algae. A review. Environ Chem Lett. 2020;18(2):377–92.

    Article  CAS  Google Scholar 

  20. Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO. Wastewater treatment using filamentous algae – A review. Bioresour Technol. 2020;298:122556.

    Article  CAS  Google Scholar 

  21. Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res. 2017;24:438–49.

    Article  Google Scholar 

  22. Úbeda B, Gálvez JÁ, Michel M, Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour Technol. 2017;228:210–7.

    Article  Google Scholar 

  23. Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev. 2013;27:622–53.

    Article  CAS  Google Scholar 

  24. Yang Q, Li H, Wang D, Zhang X, Guo X, Pu S, et al. Utilization of chemical wastewater for CO2 emission reduction: purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture. Appl Energ. 2020;276:115502.

    Article  CAS  Google Scholar 

  25. Bwapwa JK, Jaiyeola AT, Chetty R. Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem Eng. 2017;24:62–70.

    Google Scholar 

  26. Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E. The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. J Phycol. 2011;47(5):969–80.

    Article  CAS  Google Scholar 

  27. Pratush A, Ye X, Yang Q, Kan J, Peng T, Wang H, et al. Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol. 2020;104(6):2385–409.

    Article  CAS  Google Scholar 

  28. Gao J, Wang F, Jiang W, Han J, Wang P, Liu D, et al. Biodegradation of chiral flufiprole in Chlorella pyrenoidosa: kinetics, transformation products, and toxicity evaluation. J Agric Food Chem. 2020;68(7):1966–73.

    Article  CAS  Google Scholar 

  29. Sinha S, Singh R, Chaurasia AK, Nigam S. Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of direct Red-31 dye along with other industrial pollutants to improve the water-quality. J Hazard Mater. 2016;306:386–94.

    Article  CAS  Google Scholar 

  30. Ding T, Li W, Yang M, Yang B, Li J. Toxicity and biotransformation of bisphenol S in freshwater green alga Chlorella vulgaris. Sci Total Environ. 2020;747:141144.

    Article  CAS  Google Scholar 

  31. Avila R, Peris A, Eljarrat E, Vicent T, Blánquez P. Biodegradation of hydrophobic pesticides by microalgae: transformation products and impact on algae biochemical methane potential. Sci Total Environ. 2020;142114.

  32. Nie J, Sun Y, Zhou Y, Kumar M, Usman M, Li J, et al. Bioremediation of water containing pesticides by microalgae: mechanisms, methods, and prospects for future research. Sci Total Environ. 2020;707:136080.

    Article  CAS  Google Scholar 

  33. Della Greca M, Pinto G, Pistillo P, Pollio A, Previtera L, Temussi F. Biotransformation of ethinylestradiol by microalgae. Chemosphere. 2008;70(11):2047–53.

    Article  CAS  Google Scholar 

  34. Ding T, Wang S, Yang B, Li J. Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Chemosphere. 2020;240:124949.

    Article  CAS  Google Scholar 

  35. Wang Y, Sun Q, Li Y, Wang H, Wu K, Yu C-P. Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae. Ecotoxicol Environ Saf. 2019;180:723–32.

    Article  CAS  Google Scholar 

  36. Pan C-G, Peng F-J, Ying G-G. Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus. Environ Pollut. 2018;240:534–40.

    Article  CAS  Google Scholar 

  37. Peng F-Q, Ying G-G, Yang B, Liu S, Lai H-J, Liu Y-S, et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere. 2014;95:581–8.

    Article  CAS  Google Scholar 

  38. Ding T, Lin K, Yang B, Yang M, Li J, Li W, et al. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol. 2017;238:164–73.

    Article  CAS  Google Scholar 

  39. Ding T, Li W, Cai M, Jia X, Yang M, Yang B, et al. Algal toxicity, accumulation and metabolic pathways of galaxolide. J Hazard Mater. 2020;384:121360.

    Article  CAS  Google Scholar 

  40. Jaén-Gil A, Ferrando-Climent L, Ferrer I, Thurman EM, Rodríguez-Mozaz S, Barceló D, et al. Sustainable microalgae-based technology for biotransformation of benzalkonium chloride in oil and gas produced water: a laboratory-scale study. Sci Total Environ. 2020;748:141526.

    Article  Google Scholar 

  41. Xiong Q, Liu Y-S, Hu L-X, Shi Z-Q, Cai W-W, He L-Y, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res. 2020;175:115656.

    Article  CAS  Google Scholar 

  42. Ouada BS, Ben AR, Cimetiere N, Leboulanger C, Ouada BH, Sayadi S. Biodegradation of diclofenac by two green microalgae: Picocystis sp. and Graesiella sp. Ecotoxicol Environ Saf. 2019;186:109769.

    Article  Google Scholar 

  43. Mamun MAA, Omori Y, Miki O, Rahman IMM, Mashio AS, Maki T, et al. Comparative biotransformation and detoxification potential of arsenic by three macroalgae species in seawater: Evidence from laboratory culture studies. Chemosphere. 2019;228:117–27.

    Article  CAS  Google Scholar 

  44. Sakaguchi T, Tsuji T, Nakajima A, Horikoshi T. Accumulation of cadmium by green microalgae. Eur J Appl Microbiol Biotechnol. 1979;8(3):207–15.

    Article  CAS  Google Scholar 

  45. Maeda S, Mizoguchi M, Ohki A, Takeshita T. Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Part I. Toxicity and accumulation. Chemosphere. 1990;21(8):953–63.

    Article  CAS  Google Scholar 

  46. Tam NFY, Chong AMY, Wong YS. Removal of tributyltin (TBT) by live and dead microalgal cells. Mar Pollut Bull. 2002;45(1):362–71.

    Article  CAS  Google Scholar 

  47. Mehta SK, Gaur JP. Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng. 2001;18(1):1–13.

    Article  Google Scholar 

  48. Peng Z, Wu F, Deng N. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions. Environ Pollut. 2006;144(3):840–6.

    Article  CAS  Google Scholar 

  49. Doshi H, Ray A, Kothari IL. Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng. 2007;96(6):1051–63.

    Article  CAS  Google Scholar 

  50. Doshi H, Ray A, Kothari IL. Biosorption of cadmium by live and dead Spirulina: ir spectroscopic, kinetics, and sem studies. Curr Microbiol. 2007;54(3):213–8.

    Article  CAS  Google Scholar 

  51. Wang L, Zhang C, Wu F, Deng N. Photodegradation of aniline in aqueous suspensions of microalgae. J Photochem Photobiol B Biol. 2007;87(1):49–57.

    Article  CAS  Google Scholar 

  52. Flouty R, Estephane G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J Environ Manage. 2012;111:106–14.

    Article  CAS  Google Scholar 

  53. Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem. 2014;49(10):1723–32.

    Article  CAS  Google Scholar 

  54. Pathak VV, Kothari R, Chopra AK, Singh DP. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manage. 2015;163:270–7.

    Article  CAS  Google Scholar 

  55. Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29(1):211–21.

    Article  CAS  Google Scholar 

  56. Habibzadeh M, Chaibakhsh N, Naeemi AS. Optimized treatment of wastewater containing cytotoxic drugs by living and dead biomass of the freshwater microalga, Chlorella vulgaris. Ecol Eng. 2018;111:85–93.

    Article  Google Scholar 

  57. Hedayatkhah A, Cretoiu MS, Emtiazi G, Stal LJ, Bolhuis H. Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. J Environ Manage. 2018;227:313–20.

    Article  CAS  Google Scholar 

  58. Sedláková-Kaduková J, Pristaš P. Study of mechanisms used by algae to decrease the silver toxicity in aquatic environment. Inzynieria Mineralna. 2019;2019(1):115–8.

    Google Scholar 

  59. Deng L, Su Y, Su H, Wang X, Zhu X. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater. 2007;143(1):220–5.

    Article  CAS  Google Scholar 

  60. Dönmez G, Aksu Z. Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochem. 2002;38(5):751–62.

    Article  Google Scholar 

  61. Rubín E, Rodríguez P, Herrero R. Sastre de Vicente ME. Adsorption of methylene blue on chemically modified algal biomass: equilibrium, dynamic, and surface data. J Chem Eng Data. 2010;55(12):5707–14.

    Article  Google Scholar 

  62. Santaeufemia S, Torres E, Mera R, Abalde J. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater. 2016;320:315–25.

    Article  CAS  Google Scholar 

  63. Barrett JP. The coefficient of determination—some limitations. Am Stat. 1974;28(1):19–20.

    Google Scholar 

  64. Syafiuddin A, Salmiati S, Hadibarata T, Kueh ABH, Salim MR, Zaini MAA. Silver nanoparticles in the water environment in Malaysia: inspection, characterization, removal, modeling, and future perspective. Sci Rep. 2018;8(1):1–15.

    Article  CAS  Google Scholar 

  65. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA. Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J Environ Manage. 2018;218:59–70.

    Article  CAS  Google Scholar 

  66. Syafiuddin A, Salmiati S, Hadibarata T, Salim MR, Kueh ABH, Suhartono S. Removal of silver nanoparticles from water environment: experimental, mathematical formulation, and cost analysis. Water Air Soil Pollut. 2019;230(5):102–17.

    Article  Google Scholar 

  67. Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam. 1966;5(2):212–23.

    Article  CAS  Google Scholar 

  68. Srivastava S, Agrawal SB, Mondal MK. Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecol Eng. 2015;85:56–66.

    Article  Google Scholar 

  69. Del Bubba M, Arias CA, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 2003;37(14):3390–400.

    Article  Google Scholar 

  70. Ghosal PS, Gupta AK. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J Mol Liq. 2017;225:137–46.

    Article  CAS  Google Scholar 

  71. Abu-Alsoud GF, Hawboldt KA, Bottaro CS. Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models. J Chromatogr A. 1629;2020:461463.

    Google Scholar 

  72. Tran TH, Le AH, Pham TH, Nguyen DT, Chang SW, Chung WJ, et al. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ. 2020;725:138325.

    Article  CAS  Google Scholar 

  73. Liu Y, Xiong Y, Xu P, Pang Y, Du C. Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: isotherm and kinetics modeling. Sci Total Environ. 2020;708:134918.

    Article  CAS  Google Scholar 

  74. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T. Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies. J Water Process Eng. 2020;33:101055.

    Article  Google Scholar 

  75. Patil SR, Sutar SS, Jadhav JP. Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: kinetic, isotherm, phyto and cyto-genotoxicity studies. Environ Technol Innov. 2020;18:100648.

    Article  Google Scholar 

  76. Aksu Z. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 2005;40(3):997–1026.

    Article  CAS  Google Scholar 

  77. Vo HNP, Ngo HH, Guo W, Nguyen KH, Chang SW, Nguyen DD, et al. Micropollutants cometabolism of microalgae for wastewater remediation: effect of carbon sources to cometabolism and degradation products. Water Res. 2020;183:115974.

    Article  CAS  Google Scholar 

  78. Wang R, Li F, Ruan W, Tai Y, Cai H, Yang Y. Removal and degradation pathway analysis of 17β-estradiol from raw domestic wastewater using immobilised functional microalgae under repeated loading. Biochem Eng J. 2020;161:107700.

    Article  CAS  Google Scholar 

  79. Lee S-H, Xiong J-Q, Ru S, Patil SM, Kurade MB, Govindwar SP, et al. Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus. J Hazard Mater. 2020;389:122149.

    Article  CAS  Google Scholar 

  80. Nicodemus TJ, DiRusso CC, Wilson M, Black PN. Reactive oxygen species (ROS) mediated degradation of organophosphate pesticides by the green microalgae Coccomyxa subellipsoidea. Bioresour Technol Rep. 2020;11:100461.

    Article  Google Scholar 

  81. Xiao M, Ma H, Sun M, Yin X, Feng Q, Song H, et al. Characterization of cometabolic degradation of p-cresol with phenol as growth substrate by Chlorella vulgaris. Bioresour Technol. 2019;281:296–302.

    Article  CAS  Google Scholar 

  82. S DP, A.K B. A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant. J Env Chem Eng. 2019;7(3):103079.

    Article  Google Scholar 

  83. HydroMentia. https://hydromentia.com. Accessed 15 March 2021

  84. Dinkins KC, Zivojnovich MJ, Stewart EA III. Review of large scale Algal Turf Scrubber® algae based water treatment systems and algal biomass production and use. Proceedings of the Water Environment Federation. 2009;2009(7):7972–7.

    Article  Google Scholar 

  85. Wollmann F, Dietze S, Ackermann J-U, Bley T, Walther T, Steingroewer J, et al. Microalgae wastewater treatment: biological and technological approaches. Engineering in Life Sciences. 2019;19(12):860–71.

    Article  CAS  Google Scholar 

  86. Leite LDS, dos Santos PR, Daniel LA. Microalgae harvesting from wastewater by pH modulation and flotation: assessing and optimizing operational parameters. J Environ Manage. 2020;254:109825.

    Article  Google Scholar 

  87. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol. 2020;301:122804.

    Article  CAS  Google Scholar 

  88. Wang Q, Shen Q, Wang J, Zhang Y, Zhang Z, Lei Z, et al. Fast cultivation and harvesting of oil-producing microalgae Ankistrodesmus falcatus var. acicularis fed with anaerobic digestion liquor via biogranulation in addition to nutrients removal. Sci Total Environ. 2020;741:140183.

    Article  CAS  Google Scholar 

  89. Yang L, Zhang H, Cheng S, Zhang W, Zhang X. Enhanced microalgal harvesting using microalgae-derived extracellular polymeric substance as flocculation aid. ACS Sustainable Chem Eng. 2020;8(10):4069–75.

    Article  Google Scholar 

  90. Vu HP, Nguyen LN, Lesage G, Nghiem LD. Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris. Environ Technol Innov. 2020;17:100622.

    Article  Google Scholar 

  91. Xu Z, Wang H, Cheng P, Chang T, Chen P, Zhou C, et al. Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery – a review. Sci Total Environ. 2020;746:141039.

    Article  CAS  Google Scholar 

  92. Almomani F. Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ. 2020;720:137621.

    Article  CAS  Google Scholar 

  93. Labeeuw L, Commault AS, Kuzhiumparambil U, Emmerton B, Nguyen LN, Nghiem LD, et al. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. Sci Total Environ. 2021;752:141708.

    Article  CAS  Google Scholar 

  94. Hossain N, Hasan MH, Mahlia TMI, Shamsuddin AH, Silitonga AS. Feasibility of microalgae as feedstock for alternative fuel in Malaysia: a review. Energy Strategy Rev. 2020;32:100536.

    Article  Google Scholar 

  95. Bhushan S, Kalra A, Simsek H, Kumar G, Prajapati SK. Current trends and prospects in microalgae-based bioenergy production. J Env Chem Eng. 2020;8(5):104025.

    Article  CAS  Google Scholar 

  96. Koyande AK, Chew KW, Rambabu K, Tao Y, Chu D-T, Show P-L. Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Well. 2019;8(1):16–24.

    Article  Google Scholar 

  97. Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394–404.

    Article  Google Scholar 

  98. Chisti Y. Biodiesel from microalgae. Biotechnology advances. 2007;25(3):294–306.

    Article  CAS  Google Scholar 

  99. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–32.

    Article  CAS  Google Scholar 

  100. Gendy TS, El-Temtamy SA. Commercialization potential aspects of microalgae for biofuel production: an overview. Egyptian Journal of Petroleum. 2013;22(1):43–51.

    Article  Google Scholar 

  101. Mohy El-Din SM. Effects of environmental pollutants on the growth characteristics, oxidative stress and biochemical composition of nannochloropsis salina for biodiesel production. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44(3):629–40.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the Universitas Nahdlatul Ulama Surabaya for facilitating the current work. A great collaborative effort from Nicholls State University in realizing the current review is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achmad Syafiuddin.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syafiuddin, A., Boopathy, R. Effect of Algal Cells on Water Pollution Control. Curr Pollution Rep 7, 213–226 (2021). https://doi.org/10.1007/s40726-021-00185-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00185-5

Keywords

Navigation