Skip to main content

Advertisement

Log in

Methods to Manage and Optimize Forest Biomass Supply Chains: a Review

  • Forest Engineering (R Spinelli, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper aims to provide a comprehensive but concise review of the various quantitative methods, in particular, optimization techniques, for the efficient management and control of complex forest biomass supply chains. The review is structured around a top-down hierarchical planning approach that includes strategic, tactical, and operational decisions. At each planning level, the review presents and analyses the problem to be solved, the solution (optimization) methods, and the various aspects to take into consideration for the successful implementation and use of these methods by biomass supply chain planners.

Recent Findings

Forest biomass constitutes one of the various sources of renewable energy with the potential to reduce the consumption of fossil fuels and greenhouse gas emissions. Fo rest biomass supply chains are systems with complex network designs consisting of many supply, demand, and intermediate points where the biomass is collected, stored, processed, and transported. The complexity of these supply chains as well as various factors impact the effective supply of forest-based biomass. For example, the biomass characteristics (e.g., energy content or quality), the variability in the market and economic conditions, and processing of the biomass are the main factors. The complexity requires a good understanding of the methods that exist to manage and optimize forest biomass supply chains.

Summary

Although substantial research has been done around forest biomass supply chain management and optimization, future research should focus on developing integrated frameworks that allow the optimization of biomass supply chains at the strategic, tactical, and operational level. These studies should also explore and propose approaches for the successful implementation of the proposed optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. FAO. Unified Bioenergy Terminology 2004:1–50. http://www.fao.org/3/b-j4504e.pdf (accessed January 6, 2019).

  2. Wolfsmayr UJ, Rauch P. Author’ s personal copy Science Direct The primary forest fuel supply chain:a literature review n.d.

  3. Cambero C, Sowlati T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives—a review of literature. Renew Sust Energ Rev. 2014;36:62–73. https://doi.org/10.1016/j.rser.2014.04.041.

    Article  Google Scholar 

  4. Ba BH, Prins C, Prodhon C. Models for optimization and performance evaluation of biomass supply chains: an operations research perspective. Renew Energy. 2016;87:977–89. https://doi.org/10.1016/j.renene.2015.07.045.

    Article  Google Scholar 

  5. Gibson BJ, Mentzer JT, Cook RL. Supply chain management: the pursuit of a consensus definition. J Bus Logist. 2005;26:17–25. https://doi.org/10.1002/j.2158-1592.2005.tb00203.x.

    Article  Google Scholar 

  6. Johnson DM, Jenkins TL, Zhang F. Methods for optimally locating a forest biomass-to-biofuel facility. Biofuels. 2012;3:489–503. https://doi.org/10.4155/bfs.12.34.

    Article  CAS  Google Scholar 

  7. Atashbar NZ, Labadie N, Prins C. Modeling and optimization of biomass supply chains: a review and a critical look. IFAC-PapersOnLine. 2016;49:604–15. https://doi.org/10.1016/j.ifacol.2016.07.742.

    Article  Google Scholar 

  8. Epstein R, Rönnqvist M, Weintraub A. Forest transportation. In: Weintraub A, Romero C, Bjørndal T, Epstein R, Miranda J, editors. Handb. Oper. Res. Nat. Resour. Boston: Springer US; 2007. p. 391–403. https://doi.org/10.1007/978-0-387-71815-6_20.

    Chapter  Google Scholar 

  9. • Sharma B, Ingalls RG, Jones CL, Khanchi A. Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future. Renew Sust Energ Rev. 2013;24:608–27. https://doi.org/10.1016/J.RSER.2013.03.049 This paper systematically describes energy needs, energy targets, biofuel feedstocks, conversion processes, and finally provides a comprehensive review of biomass supply chain design and modeling.

    Article  Google Scholar 

  10. •• De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew Sustain Energy Rev. 2014;31:657–70. https://doi.org/10.1016/j.rser.2013.12.036 This paper gives an overview of the optimisation methods and models focussing on decisions regarding the design and management of the upstream segment of the biomass-for-bioenergy supply chain.

    Article  Google Scholar 

  11. Ghaderi H, Pishvaee MS, Moini A. Biomass supply chain network design: an optimization-oriented review and analysis. Ind Crop Prod. 2016;94:972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027.

    Article  Google Scholar 

  12. Woo H, Acuna M, Moroni M, Taskhiri MS, Turner P. Optimizing the location of biomass energy facilities by integrating multi-criteria analysis (MCA) and geographical information systems (GIS). Forests. 2018;9:1–15. https://doi.org/10.3390/f9100585.

    Article  Google Scholar 

  13. • Delivand MK, ARB C, Garofalo P, Monteleone M. Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG (greenhouse gas) emissions: a case study on electricity productions in South Italy. J Clean Prod. 2015;99:129–39 This paper presents a methodology that combines Geographical Information Systems and Multi-criteria Analysis to analyse the logistics costs and emmissions in a biomass-to-electricity supply chain.

    Article  Google Scholar 

  14. Sánchez-García S, Athanassiadis D, Martínez-Alonso C, Tolosana E, Majada J, Canga E. A GIS methodology for optimal location of a wood-fired power plant: quantification of available woodfuel, supply chain costs and GHG emissions. J Clean Prod. 2017;157:201–12.

    Article  Google Scholar 

  15. Chen X, Önal H. An economic analysis of the future U.S. biofuel industry, facility location, and supply chain network. Transp Sci. 2014;48:575–91. https://doi.org/10.1287/trsc.2013.0488.

    Article  Google Scholar 

  16. •• Acuna M. Timber and biomass transport optimization: a review of planning issues, solution techniques and decision support tools. Croat J For Eng. 2011;38:279–90 This paper presents an extensive overview of the transport and biomass optimization problem in the forest industry.

    Google Scholar 

  17. Eriksson L, Björheden R. Optimal storing, transport and processing for a forest-fuel supplier. Eur J Oper Res. 1989;43:26–33.

    Article  Google Scholar 

  18. Gunnarsson H, Rönnqvist M, Lundgren JT. Supply chain modelling of forest fuel. Eur J Oper Res. 2004;158:103–23. https://doi.org/10.1016/S0377-2217(03)00354-0.

    Article  Google Scholar 

  19. Kanzian C, Holzleitner F, Stampfer K, Ashton S. Regional energy wood logistics—optimizing local fuel supply. Silva Fenn. 2009;43:113–28. https://doi.org/10.14214/sf.464.

    Article  Google Scholar 

  20. •• van Dyken S, Bakken BH, Skjelbred HI. Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy. 2010;35:1338–50. https://doi.org/10.1016/J.ENERGY.2009.11.017 This paper presents a linear mixed-integer modeling approach for basic components in a biomass supply chain including supply, processing, storage and demand of different types of biomass.

    Article  Google Scholar 

  21. Akhari S, Sowlati T. K D. Optimal flow of regional forest biomass to a district heating system. Int J Energy Res. 2014;38:954–64. https://doi.org/10.1002/er.3099.

    Article  Google Scholar 

  22. Sosa A, Acuna M, McDonnell K, Devlin G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Appl Energy. 2015;137:338–51. https://doi.org/10.1016/j.apenergy.2014.10.018.

    Article  Google Scholar 

  23. • Sosa A, Acuna M, McDonnell K, Devlin G. Managing the moisture content of wood biomass for the optimisation of Ireland’s transport supply strategy to bioenergy markets and competing industries. Energy. 2015;86:354–68. https://doi.org/10.1016/j.energy.2015.04.032 This paper presents a linear programming approach that includes moisture content as a driving factor for the cost optimisation of two forest supply chains that use short wood and whole trees from thinnings as material feedstock.

    Article  Google Scholar 

  24. Ghaffariyan MR, Acuna M, Brown M. Analysing the effect of five operational factors on forest residue supply chain costs: a case study in Western Australia. Biomass Bioenergy. 2013;59:486–93.

    Article  Google Scholar 

  25. Kanzian C, Kühmaier M, Zazgornik J, Stampfer K. Large scale multi-criteria optimization of forestry biomass supply networks. In: 35th Council on Forest Engineering (COFE) Conference Proceedings: Engineering New Solutions for Energy Supply and Demand, New Bern, North Carolina, USA: 2012.

  26. •• Acuna M, Anttila P, Sikanen L, Prinz R, Asikainen A. Predicting and controlling moisture content to optimise forest biomass logistics. Croat J For Eng. 2012;33:225–38 This paper presents a linear programming approach to assess the impact of forest biomass moisture content on supply chain costs, including harevsting, storage, chipping, and transportation of fuels.

    Google Scholar 

  27. Kogler C, Rauch P. Discrete event simulation of multimodal and unimodal transportation in the wood supply chain: a literature review. Silva Fenn. 2018;52. https://doi.org/10.14214/sf.9984.

  28. Net E Le, Bajric F, Vötter D, Berg S. Identification of existing transport methods and alternative methods or new approaches with data about costs, labour input and energy consumption. EFI Technical Report 76. 68 p. Joensuu, Finland: 2010.

  29. Lautala P, Pouryousef H, Handler R, Chartier S. The role of railroads in multimodal woody biomass transportation in Michigan. ASME/ASCE/IEEE 2012 Jt. Rail Conf., Philadelphia, Pennsylvania, USA: ASME; 2012, p. 1–9. doi:https://doi.org/10.1115/jrc2012-74131.

  30. Kordnejad B. Evaluation and modelling of short haul untermodal transport systems. Doctoral Thesis in Transport Science. KTH Royal Institute of Technology, 2016.

  31. Tahvanainen T, Anttila P. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy. 2011;35:3360–75. https://doi.org/10.1016/J.BIOMBIOE.2010.11.014.

    Article  Google Scholar 

  32. Chesneau J-B, Le Net E, Berg S. A transport tool to evaluate sustainability impacts of transport processes within the forest wood chain. Eur J For Res. 2012;131:73–80. https://doi.org/10.1007/s10342-011-0530-4.

    Article  Google Scholar 

  33. Karttunen K, Väätäinen K, Asikainen A, Ranta T. The operational efficiency of waterway transport of forest chips on Finland’s lake Saimaa. Silva Fenn. 2012;46:395–413.

    Article  Google Scholar 

  34. •• Shabani N, Akhtari S, Sowlati T. Value chain optimization of forest biomass for bioenergy production: a review. Renew Sustain Energy Rev. 2013;23:299–311. https://doi.org/10.1016/j.rser.2013.03.005 This paper presents a comprehensive review of deterministic and stochastic mathematical models to optimize forest biomass supply chains for electricity, heat and biofuels production.

    Article  Google Scholar 

  35. Ekşioğlu SD, Acharya A, Leightley LE, Arora S. Analyzing the design and management of biomass-to-biorefinery supply chain. Comput Ind Eng. 2009;57:1342–52. https://doi.org/10.1016/J.CIE.2009.07.003.

    Article  Google Scholar 

  36. Kim J, Realff MJ, Lee JH, Whittaker C, Furtner L. Design of biomass processing network for biofuel production using an MILP model. Biomass Bioenergy. 2011;35:853–71. https://doi.org/10.1016/j.biombioe.2010.11.008.

    Article  CAS  Google Scholar 

  37. Leduc S, Lundgren J, Franklin O, Dotzauer E. Location of a biomass based methanol production plant: a dynamic problem in northern Sweden. Appl Energy. 2010;87:68–75. https://doi.org/10.1016/j.apenergy.2009.02.009.

    Article  CAS  Google Scholar 

  38. Frombo F, Minciardi R, Robba M, Sacile R. A decision support system for planning biomass-based energy production. Energy. 2009;34:362–9. https://doi.org/10.1016/J.ENERGY.2008.10.012.

    Article  CAS  Google Scholar 

  39. Rauch P, Gronalt M. The terminal location problem in the forest fuels supply network. Int J For Eng. 2010;21:32–40. https://doi.org/10.1080/14942119.2010.10702596.

    Article  Google Scholar 

  40. Frombo F, Minciardi R, Robba M, Rosso F, Sacile R. Planning woody biomass logistics for energy production: a strategic decision model. Biomass Bioenergy. 2009;33:372–83. https://doi.org/10.1016/j.biombioe.2008.09.008.

    Article  Google Scholar 

  41. Sessions J, Paredes G. A solution procedure for the sort yard location problem in forest operations. For Sci. 1987;33:750–62. https://doi.org/10.1093/forestscience/33.3.750.

    Article  Google Scholar 

  42. Paredes G, Sessions J. A solution method for the transfer yard location problem in forest operations. For Prod J. 1988;38:53–8.

    Google Scholar 

  43. San Cristóbal J. Multi-criteria analysis. Multi Criteria Anal. Renew. Energy Ind. 1st ed. London: Springer-Verlag; 2012. p. 7–10. https://doi.org/10.1007/978-1-4471-2346-0.

    Book  Google Scholar 

  44. Pukkala T. Introduction to multi-objective forest planning. In: Pukkala T, editor. Multi-objective For. Plan. 1st ed., Springer Netherlands; 2002, p. 1–19. doi:https://doi.org/10.1007/978-94-015-9906-1.

  45. You F, Wang B. Life cycle optimization of biomass-to-liquid supply chains with distributed–centralized processing networks. Ind Eng Chem Res 2011;50:10102–10127. doi:https://doi.org/10.1021/ie200850t.

  46. Bernardi A, Giarola S, Bezzo F. Spatially explicit multiobjective optimization for the strategic design of first and second generation biorefineries including carbon and water footprints. Ind Eng Chem Res. 2013;52:7170–80. https://doi.org/10.1021/ie302442j.

    Article  CAS  Google Scholar 

  47. Bettinger P, Boston K. Forest planning heuristics-current recommendations and research opportunities for s-metaheuristics. Forests. 2017;8:1–10. https://doi.org/10.3390/f8120476.

    Article  Google Scholar 

  48. Pukkala T, Kurttila M. Examining the performance of six heuristic optimisation techniques in different forest planning problems. Silva Fenn. 2005;39:67–80. https://doi.org/10.14214/sf.396.

    Article  Google Scholar 

  49. Reche López P, García Galán S, Ruiz Reyes N, Jurado F. A method for particle swarm optimization and its application in location of biomass power plants. Int J Green Energy. 2008;5:199–211. https://doi.org/10.1080/15435070802107165.

    Article  Google Scholar 

  50. Venema HD, Calamai PH. Bioenergy systems planning using location–allocation and landscape ecology design principles. Ann Oper Res 2003;123:241–264. doi:https://doi.org/10.1023/A:1026135632158.

  51. Awudu I, Zhang J. Uncertainties and sustainability concepts in biofuel supply chain management: a review. Renew Sust Energ Rev. 2012;16:1359–68. https://doi.org/10.1016/j.rser.2011.10.016.

    Article  Google Scholar 

  52. Ma J, Scott NR, DeGloria SD, Lembo AJ. Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. Biomass Bioenergy. 2005;28:591–600. https://doi.org/10.1016/j.biombioe.2004.12.003.

    Article  Google Scholar 

  53. How BS, Lam HL. Novel evaluation approach for biomass supply chain: an extended application of PCA. Chem Eng Trans. 2017;61:1591–6. https://doi.org/10.3303/CET1761263.

    Article  Google Scholar 

  54. Alam M, Pulkki R, Shahi C. Road network optimization model for supplying woody biomass feedstock for energy production in northwestern Ontario. Open For Sci. 2012;5:1–14.

    Article  Google Scholar 

  55. Sokhansanj S, Kumar A, Turhollow AF. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy. 2006;30:838–47. https://doi.org/10.1016/J.BIOMBIOE.2006.04.004.

    Article  Google Scholar 

  56. Asikainen A. Simulation of stump crushing and truck transport of chips. Scand J For Res. 2010;25:245–50. https://doi.org/10.1080/02827581.2010.488656.

    Article  Google Scholar 

  57. Shi L, Liu S. Methods of estimating forest biomass: a review. In: Tumuluru J, editor. Biomass Vol. Estim. Valorization Energy: InTech; 2017. https://doi.org/10.5772/65733.

  58. Powell WB, Marar A, Gelfand J, Bowers S. Implementing real-time optimization models: a case application from the motor carrier industry. Oper Res. 2002;50:571–81. https://doi.org/10.2307/3088509.

    Article  Google Scholar 

  59. • Routa J, Asikainen A, Björheden R, Laitila J, Röoser D. Forest energy procurement: state of the art in Finland and Sweden. WIREs Energy Environ. 2013;2:602–13. https://doi.org/10.1002/wene.24 This paper provides a short overview of the driving forces behind the current technical solutions of forest energy procurement systems in Finland and Sweden and some perspectives on possible future developments.

    Article  CAS  Google Scholar 

  60. Ghaffariyan MR. Remaining slash in different harvesting operation sites in Australian plantations. Silva Balc. 2013;14:83–93.

    Google Scholar 

  61. O’Neal B, Gallagher T. Evaluating productivity and costs of a biomass harvesting system in the Southern United States. In: 2008 Council on Forest Engineering (COFE) Conference Proceedings: Addressing Forest Engineering Challenges for the Future, Charleston, South Carolina, USA: 2008.

  62. • Ghaffariyan MR, Brown M, Acuna M, Sessions J, Gallagher T, Kühmaier M, et al. An international review of the most productive and cost effective forest biomass recovery technologies and supply chains. Renew Sust Energ Rev. 2017;74. https://doi.org/10.1016/j.rser.2017.02.014 This study provides a state-of-the art overview of forest biomass harvesting technologies and supply chains used in North America, Europe and the Southern Hemisphere.

  63. •• Zamora-Cristales R, Sessions J, Boston K, Murphy G. Economic optimization of forest biomass processing and transport in the Pacific Northwest USA. For Sci. 2015;61:220–34 This paper provides a mathematical formulation and solution for forest biomass and collection at the operational level in steep terrain as a mixed integer transshipment problem. Applications and potential cost savings from decision support modeling are provided.

    Google Scholar 

  64. Han H, Chung W, Wells L, Anderson N. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network. Forests. 2018;9. https://doi.org/10.3390/f9030121.

  65. Belart F, Sessions J, Leshchinsky B, Murphy G. Economic implications of moisture content and logging system in forest harvest residue delivery for energy production: a case study. Can J For Res. 2017;47:458–66.

    Article  Google Scholar 

  66. Kuhmaier M, Stampfer K. Development of a multi-criteria decision support tool for energy wood supply management. Croat J For Eng. 2012;33:181–98.

    Google Scholar 

  67. Montgomery TD, Han H-S, Kizha AR. Modeling work plan logistics for centralized biomass recovery operations in mountainous terrain. Biomass Bioenergy. 2016;85:262–70. https://doi.org/10.1016/J.BIOMBIOE.2015.11.023.

    Article  Google Scholar 

  68. •• Zamora-Cristales R, Sessions J, Murphy G, Boston K. Economic impact of truck–machine interference in forest biomass recovery operations on steep terrain. For Prod J. 2013;63:162–73. https://doi.org/10.13073/FPJ-D-13-00031 This paper describes the importance of managing equipment interactions in steep terrain to improve equipment availability, raise prodcutivity and and residue costs. It illustrates the importance of simulation for improving operational planning and identifying bottlenecks.

    Article  Google Scholar 

  69. Spinelli R, Di Gironimo G, Esposito G, Magagnotti N. Alternative supply chains for logging residues under access constraints. Scand J For Res. 2014;29:266–74. https://doi.org/10.1080/02827581.2014.896939.

    Article  Google Scholar 

  70. •• Zamora-Cristales R, Sessions J. Modeling harvest forest residue collection for bioenergy production. Croat J For Eng. 2016;37:287–96 This paper provides a decision support for optimizing biomass collection at the operational level in gentle terrain. It illustrates biomass collection optimization using simulation to evaluate system choice as a function of collection distance. It describes the interaction between optimal collection distance and road transport costs.

    Google Scholar 

  71. Jernigan P, Gallagher T, Mitchell D, Smidt M, Teeter L. High tonnage harvesting and skidding for loblolly pine energy plantations. For Prod J. 2016;66:185–91. https://doi.org/10.13073/FPJ-D-14-00055.

    Article  Google Scholar 

  72. Parsakhoo A, Mostafa M, Shataee S, Lotfalian M. Decision support system to find a skid trail network for extracting marked trees. J For Sci. 2017;63:62–9. https://doi.org/10.17221/36/2016-JFS.

    Article  Google Scholar 

  73. Spinelli R, Magagnotti N. Logging residue bundling at the roadside in mountain operations. Scand J For Res. 2009;24:173–81. https://doi.org/10.1080/02827580902806593.

    Article  Google Scholar 

  74. Sánchez-García S, Canga E, Tolosana E, Majada J. Analysis of productivity and cost of forwarding bundles of Eucalyptus logging residues on steep terrain. Croat J For Eng. 2016:9.

  75. Kärhä K, Vartiamäki T. Productivity and costs of slash bundling in Nordic conditions. Biomass Bioenergy. 2006;30:1043–52. https://doi.org/10.1016/j.biombioe.2005.12.020.

    Article  Google Scholar 

  76. • Sessions J, Tuers K, Boston K, Zamora R, Anderson R. Pricing forest biomass for power generation. West J Appl For. 2013;28:51–6. https://doi.org/10.5849/wjaf.12-012 This paper illustrates the importance of moisture content in evaluating both residue gross revenue and reduction in transportation cost. It illustrates biomass moisture within truck loads and opportunities for increasing gross revenue and reducing transportation costs through both moisture reduction and load densification.

    Article  Google Scholar 

  77. Kizha AR, Han H-S, Paulson J, Koirala A. Strategies for reducing moisture content in forest residues at the harvest site. Appl Eng Agric. 2018;34:25–33. https://doi.org/10.13031/aea.12427.

    Article  Google Scholar 

  78. Visser R, Berkett H, Spinelli R. Determining the effect of storage conditions on the natural drying of radiata pine logs for energy use. New Zeal J For Sci. 2014;44:3. https://doi.org/10.1186/1179-5395-44-3.

    Article  Google Scholar 

  79. Nurmi J. The storage of logging residue for fuel. Biomass Bioenergy. 1999;17:41–7. https://doi.org/10.1016/S0961-9534(99)00023-9.

    Article  CAS  Google Scholar 

  80. Sikanen L, Röser R, Anttila P, Prinz R. Forecasting algorithm for natural drying of energy wood in forest storages. Forest Energy Observer. Study Report 27: Finnish Forest Research Institute; 2013.

  81. Erber G, Routa J, Wilhelmsson L, Raitila J, Toiviainen M, Riekkinen J, et al. A prediction model prototype for estimating optimal storage duration and sorting. Joensuu. Finland: Finnish Forest Research Institute; 2014.

    Google Scholar 

  82. Filbakk T, Høibø O, Nurmi J. Modelling natural drying efficiency in covered and uncovered piles of whole broadleaf trees for energy use. Biomass Bioenergy. 2011;35:454–63. https://doi.org/10.1016/J.BIOMBIOE.2010.09.003.

    Article  Google Scholar 

  83. Belart F, Leshchinsky B, Sessions J. Finite element analysis to predict in-forest stored harvest residue moisture content. For Sci. 2017;63:362–76. https://doi.org/10.5849/FS-2016-064R1.

    Article  Google Scholar 

  84. Ranta T, Rinne S. The profitability of transporting uncomminuted raw materials in Finland. Biomass Bioenergy. 2006;30:231–7. https://doi.org/10.1016/J.BIOMBIOE.2005.11.012.

    Article  Google Scholar 

  85. Hakkila P. Utilization of residual forest biomass. 1st ed. Berlin: Springer-Verlag; 1989. https://doi.org/10.1007/978-3-642-74072-5.

    Book  Google Scholar 

  86. Zamora-Cristales R, Sessions J, Smith D, Marrs G. Effect of high speed blowing on the bulk density of ground residues. For Prod J. 2014;64:290–9. https://doi.org/10.13073/FPJ-D-14-00005.

    Article  Google Scholar 

  87. Shen Z, Sessions J. Log truck scheduling by network programming. For Prod J. 1989;39:47–50.

    Google Scholar 

  88. Weintraub A, Epstein R, Morales R, Seron J, Traverso P. A truck scheduling system improves efficiency in the forest industries. Interfaces (Providence). 1996;26:1–12. https://doi.org/10.1287/inte.26.4.1.

    Article  Google Scholar 

  89. Palmgren M. Optimisation methods for log truck scheduling. Theses No. 880. LiU-TEK-LIC-2001, vol. 17: Linköping University; 2001.

  90. Gronalt M, Hirsch P. Log-truck scheduling with a tabu search strategy. In: Doerner KF, Gendreau M, Greistorfer P, Gutjahr WJ, Hartl RF, Reimann M, editors. Metaheuristics – progress in complex systems optimization. New York: Springer; n.d. p. 65–88.

  91. • Acuna M, Sessions J. A simulated annealing algorithm to solve the log-truck scheduling problem. In: de Sales Guerra Tsuzuki M, de Castro Martins T, eds. Simulated Annealing: Strategies, Potential Uses and Advantages, Nova Science Publishers; 2014, 30 p., n.d. This paper presents a novel heuristics approach to solve the truck scheduling problem with the goal of optimising wood and daily biomass transport operations.

  92. Acuna M, Mirowski L, Ghaffariyan MR, Brown M. Optimising transport efficiency and costs in Australian wood chipping operations. Biomass Bioenergy. 2012;46:291–300.

    Article  Google Scholar 

  93. Svenson G. Optimized route selection for logging trucks. Inprovements to Calibrated Route Finder. Umeå: Swedish University of Agricultural Sciences; 2017.

    Google Scholar 

  94. Audy J-F, D’Amours S, Rousseau L-M. Collaborative planning in a log pickup and delivery problem. In: Bierlaire M, Michandani P, Nielsen O, Savelsbergh M, eds. TRISTAN VI - 6th Trienn. Symp. Transp. Anal., Phuket, Thailand: 2007.

  95. Frisk M, Flisberg P, Rönnqvist M, Andersson G. Detailed scheduling of harvest teams and robust use of harvest and transportation resources. Scand J For Res. 2016;31:681–90. https://doi.org/10.1080/02827581.2016.1206144.

    Article  Google Scholar 

  96. Sessions J, Lyons CK. Harvesting elevation potential from mountain forests. Int J For Eng. 2018;29:192–8. https://doi.org/10.1080/14942119.2018.1527173.

    Article  Google Scholar 

  97. Windisch J, Sikanen L, Röser D, Gritten D. Supply chain management applications for forest fuel procurement—cost or benefit? Silva Fenn. 2010;44:845–58. https://doi.org/10.14214/sf.124.

    Article  Google Scholar 

  98. Long JJ, Boston K. for Estimating the volume of logging residues, vol. 60; 2014. p. 200–4.

    Google Scholar 

  99. •• Zamora-Cristales R, Boston K, Long J, Sessions J, et al. For Prod J. 2018;68:191–8. https://doi.org/10.13073/FPJ-D-17-00045 This paper identifies that forest residue availability is closely linked to log prices and harvest method. Field data from individual residue piles in the field and at roadside are analysed to determine cost and availability at the operational level.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Acuna.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Forest Engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuna, M., Sessions, J., Zamora, R. et al. Methods to Manage and Optimize Forest Biomass Supply Chains: a Review. Curr Forestry Rep 5, 124–141 (2019). https://doi.org/10.1007/s40725-019-00093-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-019-00093-4

Keywords

Navigation