Skip to main content
Log in

Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions

  • Physiological Processes (G Goldstein, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review shows that a more or less constant rate of tip-to-base vessel widening across species, together with the assumption that wider vessels are more vulnerable to embolism, suggests how climate should limit maximum vegetation height; together, these two factors predict a maximum mean vessel diameter permitted by temperature and water availability at a site and thus maximum plant height.

Recent Findings

Empirical work makes it increasingly clear that the main driver of variation in mean vessel diameter is plant size, specifically the length of the conductive stream. Anatomical evidence, together with hydraulic optimality models, suggests that this vessel diameter-stem length relationship is the result of natural selection favoring the maintenance of constant hydraulic resistance over size increases. From their very narrow termini, vessels widen predictably from the stem tip to the base, following approximately a power law, i.e., with very rapid widening toward the tips and nearly constant diameter toward the base. This size dependence must be taken into account when studying the hydraulics-climate relationship.

Summary

This review discusses outstanding predictions that require testing, including the following: variation in the vessel diameter-stem length relationship should involve factors such as vessel length distributions, pit characteristics, leaf area, and wood density; leaves higher in trees should have higher terminal leaf vein-petiole base vessel widening rates; species without “disposable” units (e.g., columnar cacti) might have different widening rates; and within-plant widening rate should vary as plants approach their height limits. Finally, we emphasize the need to standardize for size in making comparisons of vessel diameter variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, et al. Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia. 2003;134:37–45.

    Article  Google Scholar 

  2. Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S. Convergent tapering of xylem conduits in different woody species. New Phytol. 2006;169:279–90.

    Article  Google Scholar 

  3. Weitz JS, Ogle K, Horn HS. Ontogenetically stable hydraulic design in woody plants. Funct Ecol. 2006;20:191–9.

    Article  Google Scholar 

  4. Coomes DA, Jenkins KL, Cole LES. Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biol Lett. 2007;3:87–90.

    Article  Google Scholar 

  5. •• Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, et al. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett. 2014;17:988–97. This paper shows that the vessel diameter-stem length scaling exponent across a very wide sampling of species converges on the predicted 0.2 exponent.

    Article  Google Scholar 

  6. Rosell JA, Olson ME. Do lianas really have wide vessels? Vessel diameter- stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics. 2014;16:288–95.

    Article  Google Scholar 

  7. Carlquist S. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Berlin Heidelberg: Springer; 2001.

    Book  Google Scholar 

  8. Sperry JS, Hacke UG, Pittermann J. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 2006;93:1490–500.

    Article  Google Scholar 

  9. Feild TS, Wilson JP. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. Int J Plant Sci. 2012;173:596–609.

    Article  Google Scholar 

  10. Feild TS, Arens NC. The ecophysiology of early angiosperms. Plant Cell Environ. 2007;30:291–309.

    Article  CAS  Google Scholar 

  11. Gleason SM, Butler DW, Zieminska K, Waryszak P, Westoby M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct Ecol. 2012;26:343–52.

    Article  Google Scholar 

  12. Malpighi M. Anatome plantarum. Martyn, 1675.

  13. Grew N. The anatomy of plants. Selbstverl., 1682.

  14. Sanio K. On the size of the wood cells of the Scotch pine (Pinus silvestris). Jahrbücher für Wissenschaftliche Botanik. 1872;8:401–20.

    Google Scholar 

  15. Mencuccini M, Holtta T. Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett. 2007;10:1084–93.

    Article  Google Scholar 

  16. Carlquist S. Wood anatomy of compositae: a summary, with comments on factors controlling wood evolution. Aliso. 1966;6:25–44.

    Google Scholar 

  17. Aloni R, Zimmermann MH. The control of vessel size and density along the plant axis. Differentiation. 1983;24:203–8.

    Article  Google Scholar 

  18. Rury PM. Systematic and ecological wood anatomy of the Erythroxylaceae. IAWA J. 1985;6:365–97.

    Article  Google Scholar 

  19. Ewers FW, Fisher JB, Chiu S-T. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia. 1990;84:544–52.

    Article  Google Scholar 

  20. Terrazas T, Aguilar-Rodriguez S, Lopez-Mata L. Wood anatomy and its relation to plant size and latitude in Buddleja L.(Buddlejaceae). Interciencia. 2008;33:46.

    Google Scholar 

  21. Carlquist S, Grant JR. Wood anatomy of Gentianaceae, tribe Helieae, in relation to ecology, habit, systematics, and sample diameter. Brittonia. 2005;57:276–91.

    Article  Google Scholar 

  22. Wheeler E, Baas P, Rodgers S. Variations in dicot wood anatomy: a global analysis based on the Insidewood database. IAWA J. 2007;28:229–58.

    Article  Google Scholar 

  23. Baas P, Schweingruber FH. Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA J. 1987;8:245–74.

    Article  Google Scholar 

  24. Lens F, Baas P, Jansen S, Smets E. A search for phylogenetically informative wood characters within Lecythidaceae sl. Am J Bot. 2007;94:483–502.

    Article  Google Scholar 

  25. Carlquist S. Wood anatomy of Tasmannia; summary of wood anatomy of Winteraceae. Aliso. 1989;12:257–75.

    Google Scholar 

  26. West GB, Brown JH, Enquist BJ. A general model for the structure and allometry of vascular systems. Nature. 1999;400:664–7.

    Article  CAS  Google Scholar 

  27. Drake PL, Price CA, Poot P, Veneklaas EJ. Isometric partitioning of hydraulic conductance between leaves and stems: balancing safety and efficiency in different growth forms and habits. Plant Cell Environ. 2015;38:1628–1636.

  28. Comstock JP, Sperry JS. Tansley review no. 119. Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytol. 2000:195–218.

  29. McCulloh KA, Sperry JS, Adler FR. Water transport in plants obeys Murray’s law. Nature. 2003;421:939–42.

    Article  CAS  Google Scholar 

  30. Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006;26:689–701.

    Article  Google Scholar 

  31. Sperry JS, Meinzer FC, McCulloh KA. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell and Environment. 2008;31:632–45.

    Article  Google Scholar 

  32. Mencuccini M. Hydraulic constraints in the functional scaling of trees. Tree Physiol. 2002;22:553–65.

    Article  Google Scholar 

  33. •• Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, et al. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proc Natl Acad Sci. 2010;107:22722–7. A hydraulic optimality model building on the WBE model [26], including testable assumptions regarding increasing embolism vulnerability with diameter, as well as conduit furcation.

    Article  CAS  Google Scholar 

  34. •• Hölttä T, Mencuccini M, Nikinmaa E. A carbon cost–gain model explains the observed patterns of xylem safety and efficiency. Plant Cell Environ. 2011;34:1819–34. Key exploration of a variety of parameters that can potentially intervene in conductive efficiency and safety (see Table 1)

    Article  Google Scholar 

  35. Mencuccini M, Hölttä T, Martínez-Vilalta J. Comparative criteria for models of the vascular transport systems of tall trees. In: Meinzer FC, Lachenbruch B, Dawson TE, editors. Size- and age-related changes in tree structure and function. Dordrecht: Springer; 2011. p. 309–39.

    Chapter  Google Scholar 

  36. Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytol. 1991;119:345–60.

    Article  Google Scholar 

  37. Dixon HH, Joly J. On the ascent of sap. Philos Trans R Soc Lond B. 1895;186:563–76.

    Article  Google Scholar 

  38. Sperry JS, Saliendra N, Pockman W, Cochard H, Cruiziat P, Davis S, et al. New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ. 1996;19:427–36.

    Article  Google Scholar 

  39. Tyree MT. Zimmermann MH. Springer Science & Business Media: Xylem structure and the ascent of sap; 2013.

    Google Scholar 

  40. Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theory: I. Basic analyses Japanese Journal of Ecology. 1964;14:97–105.

    Google Scholar 

  41. Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form- the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology. 1964;14:133–9.

    Google Scholar 

  42. •• Petit G, Anfodillo T. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theor Biol. 2009;259:1–4. Shows how the foundational WBE model [26] leads to an expectation of the 0.2 vessel diameter-stem length exponent

    Article  Google Scholar 

  43. Anfodillo T, Petit G, Crivellaro A. Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 2013;34:352–64.

    Article  Google Scholar 

  44. Vogel S. Vital circuits: on pumps, pipes, and the workings of circulatory systems. Oxford University Press, 1992.

  45. Wenk EH, Falster DS. Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution. 2015;5:5521–38.

    Article  Google Scholar 

  46. Banavar JR, Maritan A, Rinaldo A. Size and form in efficient transportation networks. Nature. 1999;399:130–2.

    Article  CAS  Google Scholar 

  47. Lazzarin S, Crivellaro A, Anfodillo T. Axial tracheid anatomy in a tall conifer. IAWA J.

  48. Bettiati D, Petit G, Anfodillo T. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiol. 2012;32:171–7.

    Article  Google Scholar 

  49. Petit G, Crivellaro A. Comparative axial widening of phloem and xylem conduits in small woody plants. Trees. 2014;1-7

  50. Petit G, Pfautsch S, Anfodillo T, Adams MA. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytol. 2010;187:1146–53.

    Article  Google Scholar 

  51. Petit G, Anfodillo T, De Zan C. Degree of tapering of xylem conduits in stems and roots of small Pinus cembra and Larix decidua trees. Botany. 2009;87:501–8.

    Article  Google Scholar 

  52. Olson ME, Rosell JA, León C, Zamora S, Weeks A, Alvarado-Cárdenas LO, et al. Convergent vessel diameter-stem diameter scaling across five clades of New and Old World eudicots from desert to rain forest. Int J Plant Sci. 2013;174:1062–78.

    Article  Google Scholar 

  53. Olson ME, Rosell JA. Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol. 2013;197:1204–13.

    Article  Google Scholar 

  54. Santiago LS, Pasquini SC, De Guzman ME. Physiological implications of the liana growth form. In: Schnitzer SA, Bongers F, Burnham RJ, editor. Ecology of lianas. Wiley; . 2015. p. 288–98.

  55. Ewers FW, Rosell JA, Olson ME. Lianas as structural parasites. In: Hacke U, editor. Functional and ecological xylem anatomy. Switzerland: Springer; 2015. p. 163–88.

    Google Scholar 

  56. Blomberg SP, Garland T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol. 2002;15:899–910.

    Article  Google Scholar 

  57. Olson ME, Rosell JA. Using heterochrony to detect modularity in the evolution of stem diversity in the plant family Moringaceae. Evolution. 2006;60:724–34.

    Article  Google Scholar 

  58. Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.

    Article  Google Scholar 

  59. Carlquist S, Hoekman DA. Ecological wood anatomy of the woody southern Californian flora. IAWA J. 1985;6:319–47.

    Article  Google Scholar 

  60. Fahn A, Werker E, Baas P. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Academy of Sciences and Humanities, 1986.

  61. Baas P, Werker E, Fahn A. Some ecological trends in vessel characters. Iawa Bull. 1983;4:141–59.

    Article  Google Scholar 

  62. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR. Global patterns in plant height. J Ecol. 2009;97:923–32.

    Article  Google Scholar 

  63. Hargrave K, Kolb K, Ewers F, Davis S. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol. 1994;126:695–705.

    Article  Google Scholar 

  64. Wheeler JK, Sperry JS, Hacke UG, Hoang N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005;28:800–12.

    Article  Google Scholar 

  65. •• Cai J, Tyree MT. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 2010;33:1059–69. Using a staining protocol, shows that wider vessels embolize before narrow ones.

    Article  Google Scholar 

  66. Christman MA, Sperry JS. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 2010;33:431–43.

    Article  Google Scholar 

  67. McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB. Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol. 2004;163:507–17.

    Article  Google Scholar 

  68. Sperry JS, Ikeda T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol. 1997;17:275–80.

    Article  CAS  Google Scholar 

  69. Dunham SM, Lachenbruch B, Ganio LM. Bayesian analysis of Douglas-fir hydraulic architecture at multiple scales. Trees. 2007;21:65–78.

    Article  Google Scholar 

  70. Hacke UG, Sperry JS, Pittermann J. Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot. 2004;91:386–400.

    Article  Google Scholar 

  71. Angyalossy V, Pace MR, Lima AC. Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE, editors. Ecology of lianas: Wiley; 2015. p. 253–87.

  72. Carlquist S. Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso. 1986;11:139–57.

    Google Scholar 

  73. Cochard H, Peiffer M, Le Gall K, André G. Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: impacts on water relations. J Exp Bot. 1997;48:655–63.

    Article  CAS  Google Scholar 

  74. Rosell JA, Olson ME, Aguirre-Hernández R, Carlquist S. Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carlquist and Hoekman southern Californian data set. Bot J Linn Soc. 2007;154:331–51.

    Article  Google Scholar 

  75. Carlquist S. Vasicentric tracheids as a drought survival mechanism in the woody flora of southern California and similar regions; review of vasicentric tracheids. Aliso. 1985;11:37–68.

    Google Scholar 

  76. Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K-F, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. 2016;209:123–36.

    Article  CAS  Google Scholar 

  77. Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci. 2012;109:233–7.

    Article  CAS  Google Scholar 

  78. Hanson PJ, Weltzin JF. Drought disturbance from climate change: response of United States forests. Sci Total Environ. 2000;262:205–20.

    Article  CAS  Google Scholar 

  79. Dietze MC, Moorcroft PR. Tree mortality in the eastern and central United States: patterns and drivers. Glob Chang Biol. 2011;17:3312–26.

    Article  Google Scholar 

  80. Martínez-Vilalta J, Lloret F, Breshears DD. Drought-induced forest decline: causes, scope and implications. Biol Lett. 2012;8:689–91.

    Article  Google Scholar 

  81. Rowland L, Da Costa A, Galbraith D, Oliveira R, Binks O, Oliveira A, Pullen A, Doughty C, Metcalfe D, Vasconcelos S. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature. 2015;528:119–22.

    CAS  Google Scholar 

  82. Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Chang Biol. 2008;14:1581–91.

    Article  Google Scholar 

  83. Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 2011;189:241–52.

    Article  Google Scholar 

  84. Aloni R. The role of hormones in controlling vascular differentiation. In, editor. Cellular aspects of wood formation. Springer. 2013:99–139.

  85. Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J. 2016;37:152–71.

    Article  Google Scholar 

  86. Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun. 2012;3:837.

    Article  Google Scholar 

  87. Petit G, Anfodillo T, Mencuccini M. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. New Phytol. 2008;177:653–64.

    Article  Google Scholar 

  88. Carlquist SJ. Ecological strategies of xylem evolution: Univ of California Press; 1975.

  89. Domec JC, Gartner BL. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees-Structure and Function. 2001;15:204–14.

    Article  Google Scholar 

  90. Brodribb TJ, Bienaimé D, Marmottant P. Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences USA. 2016;113:4865–9.

    Article  CAS  Google Scholar 

  91. Ackerly D, Monson RK. Waking the sleeping giant: the evolutionary foundations of plant function. Int J Plant Sci. 2003;164:S1–6.

    Article  Google Scholar 

  92. Geeta R, Lohmann LG, Magallón S, Faith DP, Hendry A, Crandall K, De Meester L, Webb C, Prieur-Richard AH, Mimura M, Conti E. Biodiversity only makes sense in the light of evolution. J Biosci. 2014;39:333.

    Article  CAS  Google Scholar 

  93. Olson ME. Linear trends in botanical systematics and the major trends of xylem evolution. Bot Rev. 2012;78:154–83.

    Article  Google Scholar 

  94. Olson ME, Arroyo-Santos A. How to study adaptation (and why to do it that way). Q Rev Biol. 2015;90:167–91.

    Article  Google Scholar 

  95. Hacke UG, Spicer R, Schreiber SG, Plavcová L. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment.

Download references

Acknowledgments

The authors acknowledge funding from Consejo Nacional de Ciencia y Tecnología (no. 236071), UNAM-DGAPA-PAPIIT (no. IA201415), and UC-MEXUS (no. CN-15-1428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Olson.

Ethics declarations

Conflict of Interest

Drs Rosell, Olson, and Anfodillo declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Physiological Processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosell, J.A., Olson, M.E. & Anfodillo, T. Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions. Curr Forestry Rep 3, 46–59 (2017). https://doi.org/10.1007/s40725-017-0049-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-017-0049-0

Keywords

Navigation