Skip to main content
Log in

Black holes and class groups

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

The theory of quadratic forms and class numbers has connections to many classical problems in number theory. Recently, class numbers have appeared in the study of black holes in string theory. We describe this connection and raise questions in the hope of inspiring new collaborations between number theorists and physicists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. By supersymmetric or BPS black holes, we mean those black hole solutions which preserve some of the supersymmetry of the underlying string theory. In general, states which preserve some supersymmetry are called BPS states.

  2. At \(k=1\), the theory of Frenkel–Lepowsky–Meurman [20] which plays a starring role in Monstrous moonshine is extremal.

  3. For \(m=2,4\), explicit CFTs which realize this exist, and are constructed in [6, 10].

References

  1. Aspinwall, P.S.: Compactification, geometry and duality: N=2. arXiv:hep-th/0001001

  2. Baker, A.: Linear forms in the logarithms of algebraic numbers. Mathematika 13, 204–216 (1966)

    Article  MathSciNet  Google Scholar 

  3. Bardeen, J., Carter, B., Hawking, S.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  MathSciNet  Google Scholar 

  4. Becker, K., Becker, M., Schwarz, J.H.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  5. Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  MathSciNet  Google Scholar 

  6. Benjamin, N., Dyer, E., Fitzpatrick, A.L., Kachru, S.: An extremal \({{\cal{N}}}=2\) superconformal field theory. J. Phys. A 48(49), 495401 (2015). [arXiv:1507.00004 [hep-th]]

    Article  MathSciNet  Google Scholar 

  7. Benjamin, N., Dyer, E., Fitzpatrick, A.L., Maloney, A., Perlmutter, E.: Small black holes and near-extremal CFTs. JHEP 1608, 023 (2016). [arXiv:1603.08524 [hep-th]]

    Article  MathSciNet  Google Scholar 

  8. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  9. Bruinier, J., Ono, K.: Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Adv. Math. 246, 198–219 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cheng, M.C.N., Dong, X., Duncan, J.F.R., Harrison, S., Kachru, S., Wrase, T.: Mock modular Mathieu moonshine modules. Res. Math. Sci. 2, 13 (2015). [arXiv:1406.5502 [hep-th]]

    Article  MathSciNet  Google Scholar 

  11. Cohen, H., Lenstra, H.W.: Heuristics on Class Groups of Number Fields. Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)

    Google Scholar 

  12. Cox, D.: Primes of the Form \(x^2 + ny^2\). Fermat, Class Field Theory and Complex Multiplication. Wiley, London (1989)

    Google Scholar 

  13. Cvetic, M., Youm, D.: Dyonic BPS saturated black holes of heterotic string on a six torus. Phys. Rev. D 53, 584–588 (1996). [arXiv:hep-th/9507090]

    Article  MathSciNet  Google Scholar 

  14. Dabholkar, A., Murthy, S., Zagier, D.: Quantum Black Holes, Wall Crossing, and Mock Modular Forms. arXiv:1208.4074 [hep-th]

  15. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields II. Proc. R. Soc. Lond. Ser. A 322(1551), 405–420 (1971)

    Article  MathSciNet  Google Scholar 

  16. Dijkgraaf, R., Maldacena, J., Moore, G., Verlinde, E.: A black hole Farey Tail. arXiv:hep-th/005003

  17. Dijkgraaf, R., Verlinde, E., Verlinde, H.: Counting dyons in \(N=4\) string theory. Nucl. Phys. B 484, 543 (1997)

    Article  MathSciNet  Google Scholar 

  18. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Birkhauser, Basel (1985)

    Book  Google Scholar 

  19. Ferrara, S., Kallosh, R., Strominger, A.: N=2 extremal black holes. Phys. Rev. D 52, R5412 (1995). [hep-th/9508072]

    Article  MathSciNet  Google Scholar 

  20. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  21. Fröhlich, A., Taylor, M.: Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  22. Gaberdiel, M.R., Gukov, S., Keller, C.A., Moore, G.W., Ooguri, H.: Extremal N=(2,2) 2D conformal field theories and constraints of modularity. Commun. Number Theory Phys. 2, 743 (2008). [arXiv:0805.4216 [hep-th]]

    Article  MathSciNet  Google Scholar 

  23. Goldfeld, D.: A simple proof of Siegel’s theorem. Proc. Natl. Acad. Sci. USA 71(5), 1055 (1974)

    Article  MathSciNet  Google Scholar 

  24. Goldfeld, D.: Gauss’ class number problem for imaginary quadratic fields. Bull. Am. Math. Soc. 13, 23–37 (1985)

    Article  MathSciNet  Google Scholar 

  25. Goldstein, K., Iizuka, N., Jena, R.P., Trivedi, S.P.: Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005). [hep-th/0507096]

    Article  MathSciNet  Google Scholar 

  26. Gomes, J.: Exact holography and black hole entropy in \(N=8\) and \(N=4\) string theory. JHEP 07, 022 (2017). [arXiv:1511.07061 [hep-th]]

    Article  MathSciNet  Google Scholar 

  27. Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z. 56(3), 227–253 (1952)

    Article  MathSciNet  Google Scholar 

  28. Heilbronn, H.: On the class-number in imaginary quadratic fields. Q. J. Math. Oxf. Ser. 5, 150–160 (1934)

    Article  Google Scholar 

  29. Höhn, G.: Conformal Designs Based on Vertex Operator Algebras. arXiv:math/0701626

  30. Höhn, G.: Selbstduale Vertexoperatorsuperalgebren und das Babymonster (Self-dual Vertex Operator Super Algebras and the Baby Monster). Ph.D. thesis (Bonn 1995), Bonner Mathematische Schriften 286, 1–85 (1996). arXiv:0706.0236

  31. Kachru, S., Tripathy, A.: Black holes and Hurwitz class numbers. Int. J. Mod. Phys. D 26(12), 1742003 (2017). [arXiv:1705.06295 [hep-th]]

    Article  MathSciNet  Google Scholar 

  32. Kawai, T., Yamada, Y., Yang, S.K.: Elliptic genera and N=2 superconformal field theory. Nucl. Phys. B 414, 191–212 (1994). [hep-th/9306096]

    Article  MathSciNet  Google Scholar 

  33. Kohnen, W., Ono, K.: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate–Shafarevich groups of elliptic curves with complex multiplication. Invent. Math. 135, 387–398 (1999)

    Article  MathSciNet  Google Scholar 

  34. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [hep-th/9711200]

  35. Manschot, J.: On the space of elliptic genera. Commun. Number Theory Phys. 2, 803 (2008). https://doi.org/10.4310/CNTP.2008.v2.n4.a4. [arXiv:0805.4333 [hep-th]]

    Article  MathSciNet  MATH  Google Scholar 

  36. Moore, G.W.: Attractors and arithmetic. arXiv:hep-th/9807056

  37. Moore, G.W.: Arithmetic and attractors. arXiv:hep-th/9807087

  38. Moore, G.W.: Strings and arithmetic. arXiv:hep-th/0401049

  39. Ono, K., Rolen, L.: On Witten’s extremal partition functions. arXiv:1807.00444

  40. Polak, J.: unpublished

  41. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser. A 46(2), 183–211 (1987)

    Article  MathSciNet  Google Scholar 

  42. Sen, A.: Black hole solutions in heterotic string theory on a torus. Nucl. Phys. B 440, 421–440 (1995). [hep-th/9411187]

    Article  MathSciNet  Google Scholar 

  43. Sen, A.: Black hole entropy function, attractors and precision counting of microstates. Gen. Relat. Gravit. 40, 2249 (2008). [arXiv:0708.1270 [hep-th]]

    Article  MathSciNet  Google Scholar 

  44. Shioda, T., Inose, H.: On Singular \(K3\) Surfaces, in Complex Analysis and Algebraic Geometry. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

  45. Siegel, C.L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1, 83–86 (1935)

    Article  Google Scholar 

  46. Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61(3), 681–690 (2000)

    Article  MathSciNet  Google Scholar 

  47. Stark, H.M.: A complete determination of the complex quadratic fields of class number one. Mich. Math. J. 14, 1–27 (1967)

    Article  MathSciNet  Google Scholar 

  48. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99 (1996). [hep-th/9601029]

    Article  MathSciNet  Google Scholar 

  49. Tripathy, P.K., Trivedi, S.P.: Non-supersymmetric attractors in string theory. JHEP 0603, 022 (2006). [hep-th/0511117]

    Article  MathSciNet  Google Scholar 

  50. Vafa, C.: Instantons on D-branes. Nucl. Phys. B 463, 435 (1996). [hep-th/9512078]

    Article  MathSciNet  Google Scholar 

  51. Watkins, M.: Class numbers of imaginary quadratic fields. Math. Comput. 73, 907–938 (2004)

    Article  MathSciNet  Google Scholar 

  52. Witten, E.: Three-Dimensional Gravity Revisited. arXiv:0706.3359 [hep-th]

  53. Zagier, D.: Traces des opérateurs de Hecke. Séminaire Delange-Pisot-Poitou 1975-1976, Exposé No. 23, 12 pages, reprinted (in English translation) as: The Eichler–Selberg trace formula on \(\rm SL_2({mathbb Z\rm })\), Appendix to S. Lang, Introduction to Modular Forms. Grundlehren d. math. Wiss. 222, Springer, Berlin, pp. 44–54 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Rolen.

Additional information

In celebration of Don Zagier’s 66th birthday.

N.B. acknowledges support from the NSF and a Stanford Graduate Fellowship, S.K. is grateful for support from the NSF and a Simons Investigator Award, and K.O. thanks the Asa Griggs Candler Fund and the NSF for support. The authors thank Michael Mertens for helpful comments on an earlier version of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamin, N., Kachru, S., Ono, K. et al. Black holes and class groups. Res Math Sci 5, 43 (2018). https://doi.org/10.1007/s40687-018-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0164-y

Keywords

Mathematics Subject Classification

Navigation