Skip to main content
Log in

Thermal Analysis of 3J33 Grinding Under Minimum Quantity Lubrication Condition

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

With the increasing requirements of environmental protection, energy conservation, and low consumption, minimum quantity lubrication (MQL) technology has attracted people’s attention. In the grinding process, the cooling performance of MQL has always been the focus. In this study, considering the influence of the grinding wheel speed, grinding fluid flow rate, and gas pressure on the useful flow rate, the MQL grinding cooling performance was studied and analyzed, and the MQL grinding heat transfer coefficient model, grinding energy partition model and grinding temperature calculation model were established. Grinding experiments were carried out with maraging steel 3J33 as the experimental object, of which the results verified the accuracy of the model. The error of temperature calculation model is 9.45%. The influence of different parameters on the surface processing quality of the workpiece was studied through experimental results. The results show that the grinding wheel speed and gas pressure have a more significant influence on the useful flow rate of the grinding fluid. The grinding fluid flow rate but significant impact on the surface quality of the workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Li, K. M., & Chou, S. Y. (2010). Experimental evaluation of minimum quantity lubrication in near micro-milling. Journal of Materials Processing Technology, 210(15), 2163–2170. https://doi.org/10.1016/j.jmatprotec.2010.07.031

    Article  Google Scholar 

  2. Sun, C., Xiu, S., Hong, Y., Kong, X., & Lu, Y. (2021). Prediction on residual stress with mechanical-thermal and transformation coupled in DGH. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2020.105629

    Article  Google Scholar 

  3. Zhang, Y., Wang, Q., Li, C., Piao, Y., Hou, N., & Hu, K. (2021). Characterization of surface and subsurface defects induced by abrasive machining of optical crystals using grazing incidence X-ray diffraction and molecular dynamics. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2021.05.006

    Article  Google Scholar 

  4. Guo, W. C., Wu, C. J., Ding, Z. S., & Zhou, Q. Z. (2021). Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. International Journal of Advanced Manufacturing Technology, 112(9–10), 2853–2871. https://doi.org/10.1007/s00170-020-06523-z

    Article  Google Scholar 

  5. Zhu, D. H., Feng, X. Z., Xu, X. H., Yang, Z. Y., Li, W. L., Yan, S. J., et al. (2020). Robotic grinding of complex components: A step towards efficient and intelligent machining-challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing, 65, 101908. https://doi.org/10.1016/j.rcim.2019.101908

    Article  Google Scholar 

  6. Lopes, J. C., Fragoso, K. M., Garcia, M. V., Ribeiro, F. S. F., Francelin, A. P., Sanchez, L. E. D., et al. (2019). Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. International Journal of Advanced Manufacturing Technology, 105(10), 4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  7. Yang, M., Li, C. H., Zhang, Y. B., Jia, D. Z., Zhang, X. P., Hou, Y. L., et al. (2017). Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 122, 41–51. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  8. Tawakoli, T., Hadad, M. J., & Sadeghi, M. H. (2010). Influence of oil mist parameters on minimum quantity lubrication—MQL grinding process. International Journal of Machine Tools and Manufacture, 50(6), 521–531. https://doi.org/10.1016/j.ijmachtools.2010.03.005

    Article  Google Scholar 

  9. Jia, D. Z., Li, C. H., Zhang, D. K., Zhang, Y. B., & Zhang, X. W. (2014). Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. Journal of Nanoparticle Research, 16(12), 1–15. https://doi.org/10.1007/s11051-014-2758-7

    Article  Google Scholar 

  10. Shao, Y. M., Fergani, O., Ding, Z. S., Li, B. Z., & Liang, S. Y. (2016). Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 steel. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 138(1), 711–718. https://doi.org/10.1115/1.4029956

    Article  Google Scholar 

  11. Ding, Z., Li, B., Liang, S. Y., Ding, Z. S., Li, B. Z., & Liang, S. Y. (2015). Maraging steel phase transformation in high strain rate grinding. International Journal of Advanced Manufacturing Technology, 80(1–4), 711–718. https://doi.org/10.1007/s00170-015-7014-5

    Article  Google Scholar 

  12. Zhuang, K., Fu, C., Weng, J., & Hu, C. (2021). Cutting edge microgeometries in metal cutting: A review. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-021-07558-6

    Article  Google Scholar 

  13. Xiao, G., Song, K., He, Y., Wang, W., Zhang, Y., & Dai, W. (2021). Prediction and experimental research of abrasive belt grinding residual stress for titanium alloy based on analytical method. The International Journal of Advanced Manufacturing Technology, 115, 1111–1125. https://doi.org/10.1007/s00170-021-07272-3

    Article  Google Scholar 

  14. Li, C., Li, X. L., Huang, S. Q., Li, L. Q., & Zhang, F. H. (2021). Ultra-precision grinding of Gd3Ga5O12 crystals with graphene oxide grinding fluid: Material deformation mechanism and performance evaluation. Journal of Manufacturing Processes, 61, 417–427. https://doi.org/10.1016/j.jmapro.2020.11.037

    Article  Google Scholar 

  15. Sun, C., Duan, J. C., Lan, D. X., Liu, Z. X., & Xiu, S. C. (2018). Prediction about ground hardening layers distribution on grinding chatter by contact stiffness. Archives of Civil and Mechanical Engineering, 18(4), 1626–1642. https://doi.org/10.1016/j.acme.2018.06.010

    Article  Google Scholar 

  16. Xi, X. X., Zhu, Y. J., Chen, T., Wu, Z. X., Angge, I. L., & Ding, W. F. (2021). Surface burn behavior in creep-feed deep grinding of gamma titanium aluminide intermetallic: characterization, mechanism, and effects. International Journal of Advanced Manufacturing Technology, 113(3–4), 985–996. https://doi.org/10.1007/s00170-021-06677-4

    Article  Google Scholar 

  17. Ji, X., Li, B. Z., Zhang, X. P., & Liang, S. Y. (2014). The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. International Journal of Precision Engineering and Manufacturing, 15(11), 2443–2451. https://doi.org/10.1007/s12541-014-0612-6

    Article  Google Scholar 

  18. Balan, A. S. S., Vijayaraghavan, L., & Krishnamurthy, R. (2013). Minimum quantity lubricated grinding of Inconel 751 alloy. Materials and Manufacturing Processes, 28(4), 430–435. https://doi.org/10.1080/10426914.2013.763965

    Article  Google Scholar 

  19. Liao, Y. S., Liao, C. H., & Lin, H. M. (2017). Study of oil-water ratio and flow rate of MQL fluid in high speed milling of Inconel 718. International Journal of Precision Engineering and Manufacturing, 18(2), 257–262. https://doi.org/10.1007/s12541-017-0033-4

    Article  Google Scholar 

  20. Huang, X. M., Ren, Y. H., Li, T., Zhou, Z. X., & Zhang, G. F. (2018). Influence of minimum quantity lubrication parameters on grind-hardening process. Materials and Manufacturing Processes, 33(1), 69–76. https://doi.org/10.1080/10426914.2016.1269916

    Article  Google Scholar 

  21. Balan, A. S. S., Kullarwar, T., Vijayaraghavan, L., & Krishnamurthy, R. (2017). Computational fluid dynamics analysis of MQL spray parameters and its influence on superalloy grinding. Machining Science and Technology, 21(4), 603–616. https://doi.org/10.1080/10910344.2017.1365889

    Article  Google Scholar 

  22. Silva, L. R., Correa, E. C. S., Brandao, J. R., & De Avila, R. F. (2020). Environmentally friendly manufacturing: Behavior analysis of minimum quantity of lubricant—MQL in grinding process. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2013.01.033

    Article  Google Scholar 

  23. Sun, Y., Su, Z., Gong, Y., Ba, D., Yin, G., Zhang, H., & Zhou, L. (2021). Analytical and experimental study on micro-grinding surface-generated mechanism of DD5 single-crystal superalloy using micro-diamond pencil grinding tool. Archives of Civil and Mechanical Engineering, 21(1), 1–22. https://doi.org/10.1007/s43452-020-00163-6

    Article  Google Scholar 

  24. Liu, H., Song, W. Q., Niu, Y. H., & Zio, E. (2021). Generalized cauchy method for remaining useful life prediction of wind turbine gearboxes. Mechanical Systems and Signal Processing, 153(15), 107471. https://doi.org/10.1016/j.ymssp.2020.107471

    Article  Google Scholar 

  25. Yang, M., Li, C. H., Zhang, Y. B., Wang, Y. G., Li, B. K., Jia, D. Z., et al. (2017). Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 126, 525–537. https://doi.org/10.1016/j.applthermaleng.2017.07.183

    Article  Google Scholar 

  26. Jamshidi, H., & Budak, E. (2018). Grinding temperature modeling based on a time dependent heat source. 8th Cirp Conference on High Performance Cutting (Hpc 2018), 77, 299–302. https://doi.org/10.1016/j.procir.2018.09.020

    Article  Google Scholar 

  27. Ding, Z. S., Jiang, X. H., Guo, M. X., & Liang, S. Y. (2018). Investigation of the grinding temperature and energy partition during cylindrical grinding. International Journal of Advanced Manufacturing Technology, 97(5–8), 1767–1778. https://doi.org/10.1007/s00170-018-1900-6

    Article  Google Scholar 

  28. Sharmin, I., Moon, M., Talukder, S., Alam, M., & Ahmed, M. F. (2021). Impact of nozzle design on grinding temperature of hardened steel under MQL condition. Materials Today-Proceedings, 38, 3232–3237. https://doi.org/10.1016/j.matpr.2020.09.717

    Article  Google Scholar 

  29. Li, B. K., Li, C. H., Zhang, Y. B., Wang, Y. G., Jia, D. Z., & Min, Y. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29(4), 1084–1095. https://doi.org/10.1016/j.cja.2015.10.012

    Article  Google Scholar 

  30. Wang, Y. G., Li, C. H., Zhang, Y. B., Yang, M., Li, B. K., Jia, D. Z., et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  31. Zhang, Y. B., Li, C. H., Jia, D. Z., Zhang, D. K., & Zhang, X. W. (2015). Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. Journal of Cleaner Production, 87, 930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  32. Hadad, M., & Sadeghi, B. (2012). Thermal analysis of minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools & Manufacture, 63, 1–15. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  33. Kim, H. J., Kim, N. K., & Kwak, J. S. (2006). Heat flux distribution model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding. International Journal of Machine Tools and Manufacture, 46(15), 2086–2093. https://doi.org/10.1016/j.ijmachtools.2005.12.007

    Article  Google Scholar 

  34. Guo, C., & Malkin, S. (1992). First international conference on transport phenomena in processing. Heat transfer in grinding. (pp. 377). Technomic Publishing Company Inc

  35. Sai, S. S., Manojkumar, K., & Ghosh, A. (2015). Assessment of spray quality from an external mix nozzle and its impact on SQL grinding performance. International Journal of Machine Tools and Manufacture, 89, 132–141. https://doi.org/10.1016/j.ijmachtools.2014.10.004

    Article  Google Scholar 

  36. Hadad, M. J., Tawakoli, T., Sadeghi, M. H., & Sadeghi, B. (2012). Temperature and energy partition in minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools and Manufacture, 54–55, 10–17. https://doi.org/10.1016/j.ijmachtools.2011.11.010

    Article  Google Scholar 

  37. Ding, Z. S., Sun, G. X., Guo, M. X., Jiang, X. H., Li, B. Z., & Liang, S. Y. (2020). Effect of phase transition on micro-grinding-induced residual stress. Journal of Materials Processing Technology, 281, 116647. https://doi.org/10.1016/j.jmatprotec.2020.116647

    Article  Google Scholar 

  38. Zhao, M., Mao, J., Ji, X., Feng, Y. X., & Liang, S. Y. (2021). Effect of crystallographic orientation on residual stress induced in micro-grinding. International Journal of Advanced Manufacturing Technology, 112(5–6), 1271–1284. https://doi.org/10.1007/s00170-020-06329-z

    Article  Google Scholar 

  39. Jiang, X. H., Kong, X. J., Zhang, Z. Y., Wu, Z. P., Ding, Z. S., & Guo, M. X. (2020). Modeling the effects of Undeformed Chip Volume (UCV) on residual stresses during the milling of curved thin-walled parts. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2019.105162

    Article  Google Scholar 

  40. Wu, C. J., Pang, J. Z., Li, B. Z., & Liang, S. Y. (2019). High-speed grinding of HIP-SiC ceramics on transformation of microscopic features. International Journal of Advanced Manufacturing Technology, 102(5–8), 1913–1921. https://doi.org/10.1007/s00170-018-03226-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number 51705323).

Funding

The National Natural Science Foundation of China (Grant number 51705323).

Author information

Authors and Affiliations

Authors

Contributions

ZD: conceptualization; investigation; resources; methodology; writing—reviewing and editing; project administration; funding acquisition. JS: investigation; data curation; formal analysis; methodology; validation; writing—original draft; writing—reviewing and editing. WG: investigation; data curation; formal analysis; writing—reviewing and editing. XJ and CW: validation; resources. SYL: supervision.

Corresponding author

Correspondence to Weicheng Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Sun, J., Guo, W. et al. Thermal Analysis of 3J33 Grinding Under Minimum Quantity Lubrication Condition. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1247–1265 (2022). https://doi.org/10.1007/s40684-021-00391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00391-y

Keywords

Navigation