Skip to main content
Log in

Design of a telescopic tower for wind energy production with reduced environmental impact

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

A prototype of a telescopic pole for wind energy production with low environmental impact and its lifting system for a 60–250 kW turbine and a height of 30 m have been designed and manufactured. A telescopic tower, which is raised and lowered by automation or by remote control, allows to differentiate the presence of the generator within the landscape over time. The technology currently available for lifting and lowering wind turbines is made up of telescopic poles of heights of less than 10 meters and with tilting posts of height below 30 m. Without a state of the art to refer to, the telescopic pole and its lifting system have been designed starting from scratch and solving with innovative ideas the various criticalities that have arisen. The design of the telescopic coupling, the design for maintaining the preload and for the rotational decoupling, the optimization the design of the pairs of sleeves by numerical simulations, the design of the pegs and the bushes of the jack-up lifting system have been presented. The prototype was installed in Caltanissetta, Italy, and successfully tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Reds:

Renewable energy devices

a:

Blades length

b:

Blades width

h:

Tower height

FEM:

Finite element method

References

  1. Bhandari, B., Ahn, S. H., & Ahn, T. B. (2016). Optimization of hybrid renewable energy power system for remote installations: Case studies for mountain and island. International Journal of Precision Engineering and Manufacturing,17(6), 815–822.

    Article  Google Scholar 

  2. Abu-Hamdeh, N. H., & Almitani, K. H. (2017). Construction and numerical analysis of a collapsible vertical axis wind turbine. Energy Conversion and Management,151, 400–413.

    Article  Google Scholar 

  3. Staudt, L. (2010). Design and development of small wind turbines. In Chapter of the book “WIT Transactions on State of the Art in Science and Engineering” (Vol. 44). Southampton: WIT Press. https://doi.org/10.2495/978-1-84564-205-1/07.

    Chapter  Google Scholar 

  4. Gwon, T. (2011). Structural analyses of wind turbine tower for 3 kW horizontal-axis wind turbine. Thesis. San Luis Obispo: California Polytechnic State University, August 9.

  5. Ganser, H., Mamayek, S., Samaroo, M., & Wolkiewicz, D. (2014). Design framework for comparing wind turbine erection methods. Thesis, Worcester Polytechnic Institute, April 10.

  6. “Small Wind Guidebook”, Web page, WINDExchange. (2018). https://windexchange.energy.gov/small-wind-guidebook#parts. Accessed 29 Dec 2018.

  7. “Gaia-Wind Cook up Self Raising Tower”, Web page, FarmingUK, 14 August. (2013). https://www.farminguk.com/news/Gaia-Wind-Cook-up-Self-Raising-Tower-_26232.html. Accessed 29 Dec 2018.

  8. “PMM telescopic masts with pressurized air elevation 9 m/10 m”, Online Brochure, Wimo.com. (2018). https://www.wimo.com/mast-pneumatic_e.html. Accessed 29 Dec 2018.

  9. “Telescopic mast and tower elevation solutions”, Online Brochure, Will-Burt Company. (2018). https://www.willburt.com/download/product_brochures/Telescopic-Mast-And-Tower-Elevation-Solutions-Product-Brochure.pdf. Accessed 29 Dec 2018.

  10. Sundin, E. “Telescopic Mast”, US Patent 4580377.

  11. Brannan, P., & Spraggon, M. “Telescopic Mast”, UK Patent 2497921.

  12. Creaser Jr., C.W., Hollis N.H., “Telescoping Lightweight Antenna Tower Assembly and the Like”. US Patent US5101215A.

  13. Gremillion, E.J. “Extendable antenna mast with independent retracting and lifting cables”. US Patent 4785309.

  14. “ITS Telescopic Tower Systems”. (2018). Online Brochure, Integrated Tower Systems Inc. http://www.itstowers.com/files/FIXED%20FOUNDATION%20TOWERS%20R21716.pdf. Accessed 29 Dec 2018.

  15. Van Treuren, K.W. (2016). “Small horizontal axis wind turbines: Current status and future challenges”. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (Vol. 9), Seoul, South Korea, June 13–17.

  16. Bang, H. J., Kim, H. I., & Lee, K. S. (2012). Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. International Journal of Precision Engineering and Manufacturing,13(12), 2121–2126.

    Article  Google Scholar 

  17. Bhandari, B., Poudel, S. R., Lee, K. T., & Ahn, S. H. (2014). Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing,1(2), 157–173.

    Article  Google Scholar 

  18. Lee, K. S., & Bang, H. J. (2012). A study on the prediction of lateral buckling load for wind turbine tower structures. International Journal of Precision Engineering and Manufacturing,13(10), 1829–1836.

    Article  Google Scholar 

  19. Oh, Y., Kim, K., Kim, H., & Paek, I. (2015). Control algorithm of a floating wind turbine for reduction of tower loads and power fluctuation. International Journal of Precision Engineering and Manufacturing,16(9), 2041–2048.

    Article  Google Scholar 

  20. Baek, J.-H., Kim, C.-W., Kim, Y.-C., Park, H.-C., Shi, W., & Shin, H.-K. (2012). Study on the marine growth effect on the dynamic response of offshore wind turbines. International Journal of Precision Engineering and Manufacturing,13(7), 1167–1176.

    Article  Google Scholar 

  21. Shi, W., Park, H. C., Chung, C. W., Shin, H. K., Kim, S. H., Lee, S. S., et al. (2015). Soil-structure interaction on the response of jacket-type offshore wind turbine. International Journal of Precision Engineering and Manufacturing,2(2), 139–148.

    Article  Google Scholar 

  22. Wang, Q., Zhou, H., & Wan, D. (2012). Numerical simulation of wind turbine blade-tower interaction. Journal of Marine Science and Application,11(3), 321–327.

    Article  Google Scholar 

  23. Wang, X., Chen, T., Zhao, Q., Yuan, G., & Liu, J. (2016). Fatigue evaluation of grouted connections under bending moment in offshore wind turbines based on ABAQUS scripting interface. The International Journal of Steel Structures,16(4), 1149–1159.

    Article  Google Scholar 

  24. Ryzhenkov, M. A., Ermolenko, B. V., & Ermolenko, G. V. (2011). Environmental problems of wind power engineering. Thermal Engineering,58(11), 962–969.

    Article  Google Scholar 

  25. Axisa, R., Muscat, M., Sant, T., & Farrugia, R. N. (2017). Structural assessment of a lattice tower for a small, multi-bladed wind turbine. The International Journal of Energy and Environmental Engineering,8(4), 343–358.

    Article  Google Scholar 

  26. Uys, P. E., Farkas, J., J´armai, K., & van Tonder, F. (2007). Optimisation of a steel tower for a wind turbine structure. Engineering Structures,29, 1337–1342.

    Article  Google Scholar 

  27. Lagaros, N. D., & Karlaftis, M. G. (2016). Life-cycle cost structural design optimization of steel wind towers. Computers and Structures,174, 122–132.

    Article  Google Scholar 

  28. Dimopoulos, C. A., & Gantes, C. J. (2013). Comparison of stiffening types of the cutout in tubular wind turbine towers. Journal of Constructional Steel Research,83, 62–74.

    Article  Google Scholar 

  29. Darrow, J., Johnson, K., & Wright, A. (2011). Design of a tower and drive train damping controller for the three-bladed controls advanced research turbine operating in design-driving load cases. Wind Energy,14, 571–601.

    Article  Google Scholar 

  30. Ning, Andrew, & Petch, Derek. (2016). Integrated design of downwind land-based wind turbines using analytic gradients. Wind Energy,19, 2137–2152.

    Article  Google Scholar 

  31. Soman, Rohan N., Malinowski, Pawel H., & Ostachowicz, Wieslaw M. (2016). Bi-axial neutral axis tracking for damage detection in wind-turbine towers. Wind Energy,19, 639–650.

    Article  Google Scholar 

  32. Kenna, A., & Basu, B. (2015). A finite element model for pre-stressed or post-tensioned concrete wind turbine towers. Wind Energy,18, 1593–1610.

    Article  Google Scholar 

  33. Liu, W. (2016). Design and kinetic analysis of wind turbine blade-hub-tower coupled system. Renewable Energy,94, 547–557.

    Article  Google Scholar 

  34. Rebelo, C., Moura, A., Gervásio, H., Veljkovic, M., & Simões da Silva, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations—Part 1: Structural design. Engineering Structures,74, 283–291.

    Article  Google Scholar 

  35. Hu, Y., Baniotopoulos, C., & Yang, J. (2014). Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers. Engineering Structures,81, 148–161.

    Article  Google Scholar 

  36. Chen, K., Song, M. X., & Zhang, X. (2013). The investigation of tower height matching optimization for wind turbine positioning in the wind farm. Journal of Wind Engineering and Industrial Aerodynamics,114, 83–95.

    Article  Google Scholar 

  37. Sarkar, A., & Gudmestad, O. T. (2013). Study on a new method for installing a monopile and a fully integrated offshore wind turbine structure. Marine Structures,33, 160–187.

    Article  Google Scholar 

  38. Brodersen, M. L., & Høgsber, J. (2014). Damping of offshore wind turbine tower vibrations by a stroke amplifying brace. Energy Procedia,53, 258–267.

    Article  Google Scholar 

  39. Perelmuter, A., & Yurchenko, V. (2013). Parametric optimization of steel shell towers of high-power wind turbines. Procedia Engineering,57, 895–905.

    Article  Google Scholar 

  40. Fujiyama, C., Yonetsu, K., Maeshima, T., & Koda, Y. (2014). Identifiable stress state of wind turbine tower-foundation system based on field measurement and FE analysis. Procedia Engineering,95, 279–289.

    Article  Google Scholar 

  41. Sintra, H., Mendes, V. M. F., & Melício, R. (2014). Modeling and simulation of wind shear and tower shadow on wind turbines. Procedia Technology,17, 471–477.

    Article  Google Scholar 

  42. van der Zee, T., Jan de Ruiter, M., & Wieling, I. (2017). The C-Tower project—A composite tower for offshore wind turbines. Energy Procedia,137, 401–405.

    Article  Google Scholar 

  43. Fitzgerald, B., Sarkar, S., & Staino, A. (2018). Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs). Journal of Sound and Vibration,419, 103–122.

    Article  Google Scholar 

  44. Zhang, R., Zhao, Z., & Dai, K. (2019). Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system. Engineering Structures,180, 29–39.

    Article  Google Scholar 

  45. Nezamolmolki, D., & Shooshtari, A. (2016). Investigation of nonlinear dynamic behavior of lattice structure wind turbines. Renewable Energy,97, 33–46.

    Article  Google Scholar 

  46. Cheng, Y., Xue, Z., Jiang, T., Wang, W., & Wang, Y. (2018). Numerical simulation on dynamic response of flexible multi-body tower blade coupling in large wind turbine. Energy,152, 601–612.

    Article  Google Scholar 

  47. Kang, W., Zhang, C., & Yu, J. (2016). Stochastic extreme motion analysis of jack-up responses during wet towing. Ocean Engineering,111, 56–66.

    Article  Google Scholar 

  48. Cao, Y., Nie, W., Hu, X., Zhang, S., Meng, Z., Xin, L., et al. (2016). Parameter sensitivity study of dynamic response for jack-ups by FEM analysis. Ocean Engineering,124, 125–134.

    Article  Google Scholar 

  49. Technical Specifications. (2012). Wind turbine Libellula 55 kW, ARIA S.r.l., Viale Vittorio Veneto 60, 59100 Prato, Italy, rev.4 del 23/10/2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pantano.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 37997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantano, A., Tucciarelli, T., Montinaro, N. et al. Design of a telescopic tower for wind energy production with reduced environmental impact. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 119–130 (2020). https://doi.org/10.1007/s40684-019-00102-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00102-8

Keywords

Navigation