Skip to main content
Log in

A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Origami and kirigami originally serving as the ancient papercraft techniques also provide the way of developing functional hierarchical structures for various engineering applications, for example, stretchable energy devices, wearable sensors, and self-folding scaffolds with tissue engineering, etc. The techniques based on origami/kirigami concept involve folding and cutting of substrates to provide a wide range of applications in different length scale from meter to micro/nanometer size. This simple but unique technique realizes facile and easily accessible modulation of material for mechanical, electrical, and optical properties. Furthermore, development of various origami/kirigami fabrication processes in previous researches has a vast range of material choices, from familiar materials like paper, fabric and metal sheets to advanced materials such as 2D materials and nanocomposites, by introducing computer-aided cutting, lithography/etching and direct-printing process. The modulated characteristics, as exemplified by reconfigurability, ultra-stretchability, and electrical reliability, empower wide fields of researchers to construct functional structures for diverse engineering applications. In this paper, we will discuss on the background of origami/kirigami structures, then introduce fabrication techniques and characterization of the structures and review a wide field of engineering applications like energy harvesting/storage, bioengineering, and healthcare devices for unconventional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission [22]. Copyright 2015, Springer Nature

Fig. 2

Adapted with permission [23]. Copyright 2009, AIP Publishing

Fig. 3

Adapted with permission [24]. Copyright 2016, Springer Nature

Fig. 4

Adapted with permission [30]. Copyright 2014, National Academy of Sciences (color figure online)

Fig. 5

Adapted with permission [8]. Copyright 2017, John Wiley and Sons

Fig. 6

Adapted with permission [15]. Copyright 2017, American Chemical Society

Fig. 7

Adapted with permission [83]. Copyright 2018, John Wiley and Sons

Similar content being viewed by others

References

  1. Thesiya, D., Srinivas, A., & Shukla, P. (2015). A novel lateral deployment mechanism for segmented mirror/solar panel of space telescope. Journal of Astronomical Instrumentation, 4(03n04), 1550006.

    Article  Google Scholar 

  2. Gruber, P., Häuplik, S., Imhof, B., et al. (2007). Deployable structures for a human lunar base. Acta Astronautica, 61(1–6), 484–495.

    Article  Google Scholar 

  3. Puig, L., Barton, A., & Rando, N. (2010). A review on large deployable structures for astrophysics missions. Acta Astronautica, 67(1–2), 12–26.

    Article  Google Scholar 

  4. Lang, R. J. (2004). Origami: Complexity in creases (again). Engineering and Science, 67(1), 5–19.

    Google Scholar 

  5. Lamoureux, A., Lee, K., Shlian, M., et al. (2015). Dynamic kirigami structures for integrated solar tracking. Nature Communications, 6, 8092.

    Article  Google Scholar 

  6. Tang, R., Huang, H., Tu, H., et al. (2014). Origami-enabled deformable silicon solar cells. Applied Physics Letters, 104(8), 083501.

    Article  Google Scholar 

  7. Guo, X., Li, H., Ahn, B. Y., et al. (2009). Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20149–20154.

    Article  Google Scholar 

  8. Lv, Z., Luo, Y., Tang, Y., et al. (2018). Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Advanced Materials, 30(2), 1704531.

    Article  Google Scholar 

  9. Song, Z., Wang, X., Lv, C., et al. (2015). Kirigami-based stretchable lithium-ion batteries. Scientific Reports, 5, 10988.

    Article  Google Scholar 

  10. Song, Z., Ma, T., Tang, R., et al. (2014). Origami lithium-ion batteries. Nature Communications, 5, 3140.

    Article  Google Scholar 

  11. Jamal, M., Bassik, N., Cho, J.-H., et al. (2010). Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds. Biomaterials, 31(7), 1683–1690.

    Article  Google Scholar 

  12. Randall, C. L., Kalinin, Y. V., Jamal, M., et al. (2011). Three-dimensional microwell arrays for cell culture. Lab On a Chip, 11(1), 127–131.

    Article  Google Scholar 

  13. Froeter, P., Huang, Y., Cangellaris, O. V., et al. (2014). Toward intelligent synthetic neural circuits: Directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array. ACS Nano, 8(11), 11108–11117.

    Article  Google Scholar 

  14. Schenk, M., & Guest, S. D. (2013). Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3276–3281.

    Article  Google Scholar 

  15. Jang, N. S., Kim, K. H., Ha, S. H., et al. (2017). Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Applied Materials and Interfaces, 9(23), 19612–19621.

    Article  Google Scholar 

  16. Ge, L., Wang, S., Song, X., et al. (2012). 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab On a Chip, 12(17), 3150–3158.

    Article  Google Scholar 

  17. Hong, L., Yu, X., Yi, L., et al. (2012). Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angewandte Chemie, 124(28), 7031–7034.

    Article  Google Scholar 

  18. Lee, H., & Choi, S. (2015). An origami paper-based bacteria-powered battery. Nano Energy, 15, 549–557.

    Article  Google Scholar 

  19. Yang, P. K., Lin, Z. H., Pradel, K. C., et al. (2015). Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano, 9(1), 901–907.

    Article  Google Scholar 

  20. Wu, C., Wang, X., Lin, L., et al. (2016). Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano, 10(4), 4652–4659.

    Article  Google Scholar 

  21. Hou, Y., Neville, R., Scarpa, F., et al. (2014). Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Composites Part B Engineering, 59, 33–42.

    Article  Google Scholar 

  22. Blees, M. K., Barnard, A. W., Rose, P. A., et al. (2015). Graphene kirigami. Nature, 524(7564), 204–207.

    Article  Google Scholar 

  23. Bassik, N., Stern, G. M., & Gracias, D. H. (2009). Microassembly based on hands free origami with bidirectional curvature. Applied Physics Letters, 95(9), 91901.

    Article  Google Scholar 

  24. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., et al. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.

    Article  Google Scholar 

  25. Ahn, B. Y., Shoji, D., Hansen, C. J., et al. (2010). Printed origami structures. Advanced Materials, 22(20), 2251–2254.

    Article  Google Scholar 

  26. Miura, K. (1969). Proposition of pseudo-cylindrical concave polyhedral shells. Tokyo: Institute of Space and Aeronautical Science, University of Tokyo.

    Google Scholar 

  27. Lang, R. J. (2009). Origami 4. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  28. Wang-Iverson, P., Lang, R. J., & Mark, Y. (2016). Origami 5: Fifth international meeting of origami science, mathematics, and education. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  29. Shyu, T. C., Damasceno, P. F., Dodd, P. M., et al. (2015). A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 14(8), 785–789.

    Article  Google Scholar 

  30. Cho, Y., Shin, J. H., Costa, A., et al. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17390–17395.

    Article  Google Scholar 

  31. Zhang, Y., Yan, Z., Nan, K., et al. (2015). A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 112(38), 11757–11764.

    Article  Google Scholar 

  32. Zhang, Y., Matsumoto, E. A., Peter, A., et al. (2008). One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Letters, 8(4), 1192–1196.

    Article  Google Scholar 

  33. Xu, L., Wang, X., Kim, Y., et al. (2016). Kirigami nanocomposites as wide-angle diffraction gratings. ACS Nano, 10(6), 6156–6162.

    Article  Google Scholar 

  34. Na, J. H., Evans, A. A., Bae, J., et al. (2015). Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced Materials, 27(1), 79–85.

    Article  Google Scholar 

  35. Lewis, J. A. (2002). Direct-write assembly of ceramics from colloidal inks. Current Opinion in Solid State and Materials Science, 6(3), 245–250.

    Article  Google Scholar 

  36. Smay, J. E., Cesarano, J., & Lewis, J. A. (2002). Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 18(14), 5429–5437.

    Article  Google Scholar 

  37. Li, Q., & Lewis, J. A. (2003). Nanoparticle inks for directed assembly of three-dimensional periodic structures. Advanced Materials, 15(19), 1639–1643.

    Article  Google Scholar 

  38. Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7(7–8), 32–39.

    Article  Google Scholar 

  39. Michna, S., Wu, W., & Lewis, J. A. (2005). Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials, 26(28), 5632–5639.

    Article  Google Scholar 

  40. Therriault, D., Shepherd, R. F., White, S. R., et al. (2005). Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Advanced Materials, 17(4), 395–399.

    Article  Google Scholar 

  41. Gratson, G. M., García-Santamaría, F., Lousse, V., et al. (2006). Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Advanced Materials, 18(4), 461–465.

    Article  Google Scholar 

  42. Duoss, E. B., Twardowski, M., & Lewis, J. A. (2007). Sol–gel inks for direct-write assembly of functional oxides. Advanced Materials, 19(21), 3485–3489.

    Article  Google Scholar 

  43. Wu, Z. L., Moshe, M., Greener, J., et al. (2013). Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 4, 1586.

    Article  Google Scholar 

  44. Aharoni, H., Sharon, E., & Kupferman, R. (2014). Geometry of thin nematic elastomer sheets. Physical Review Letters, 113(25), 257801.

    Article  Google Scholar 

  45. Sawa, Y., Ye, F., Urayama, K., et al. (2011). Shape selection of twist-nematic-elastomer ribbons. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6364–6368.

    Article  Google Scholar 

  46. Dudte, L. H., Vouga, E., Tachi, T., et al. (2016). Programming curvature using origami tessellations. Nature Materials, 15(5), 583.

    Article  Google Scholar 

  47. Miura, K. (1985). Method of packaging and deployment of large membranes in space. The Institute of Space and Astronautical Science Report, 618, 1.

    Google Scholar 

  48. Lv, C., Krishnaraju, D., Konjevod, G., et al. (2014). Origami based mechanical metamaterials. Scientific Reports, 4, 5979.

    Article  Google Scholar 

  49. Cheung, K. C., Tachi, T., Calisch, S., et al. (2014). Origami interleaved tube cellular materials. Smart Materials and Structures, 23(9), 094012.

    Article  Google Scholar 

  50. Filipov, E. T., Tachi, T., & Paulino, G. H. (2015). Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12321–12326.

    Article  Google Scholar 

  51. Filipov, E. T., Paulino, G. H., & Tachi, T. (2016). Origami tubes with reconfigurable polygonal cross-sections. Proceedings: Mathematical, Physical and Engineering Sciences, 472(2185), 20150607.

    MathSciNet  MATH  Google Scholar 

  52. Yasuda, H., & Yang, J. (2015). Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Physical Review Letters, 114(18), 185502.

    Article  Google Scholar 

  53. Kamrava, S., Mousanezhad, D., Ebrahimi, H., et al. (2017). Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci Rep, 7, 46046.

    Article  Google Scholar 

  54. Eidini, M., & Paulino, G. H. (2015). Unraveling metamaterial properties in zigzag-base folded sheets. Science Advances, 1(8), e1500224.

    Article  Google Scholar 

  55. Eidini, M. (2016). Zigzag-base folded sheet cellular mechanical metamaterials. Extreme Mechanics Letters, 6, 96–102.

    Article  Google Scholar 

  56. Tachi, T. (2010). Origamizing polyhedral surfaces. IEEE Transactions on Visualization and Computer Graphics, 16(2), 298–311.

    Article  MathSciNet  Google Scholar 

  57. Tachi, T. (2013). Designing freeform origami tessellations by generalizing Resch’s patterns. Journal of Mechanical Design, 135(11), 111006.

    Article  Google Scholar 

  58. Qi, Z., Campbell, D. K., & Park, H. S. (2014). Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Physical Review B, 90(24), 245437.

    Article  Google Scholar 

  59. Tang, Y., & Yin, J. (2017). Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extreme Mechanics Letters, 12, 77–85.

    Article  Google Scholar 

  60. Sussman, D. M., Cho, Y., Castle, T., et al. (2015). Algorithmic lattice kirigami: A route to pluripotent materials. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7449–7453.

    Article  Google Scholar 

  61. Fan, F.-R., Tian, Z.-Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334.

    Article  Google Scholar 

  62. Bai, P., Zhu, G., Lin, Z. H., et al. (2013). Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 7(4), 3713–3719.

    Article  Google Scholar 

  63. Xie, C., Liu, J., Fu, T.-M., et al. (2015). Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 14(12), 1286.

    Article  Google Scholar 

  64. Breger, J. C., Yoon, C., Xiao, R., et al. (2015). Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials and Interfaces, 7(5), 3398–3405.

    Article  Google Scholar 

  65. Xi, W., Schmidt, C. K., Sanchez, S., et al. (2014). Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. Nano Letters, 14(8), 4197–4204.

    Article  Google Scholar 

  66. Suzuki, T., Mabuchi, K., Takeuchi, S. (2003). A 3D flexible parylene probe array for multichannel neural recording. In Proceedings of the first international IEEE EMBS Conference on Neural engineering (pp. 154–156). IEEE.

  67. Gultepe, E., Yamanaka, S., Laflin, K. E., et al. (2013). Biologic tissue sampling with untethered microgrippers. Gastroenterology, 144(4), 691–693.

    Article  Google Scholar 

  68. Gultepe, E., Randhawa, J. S., Kadam, S., et al. (2013). Biopsy with thermally-responsive untethered microtools. Advanced Materials, 25(4), 514–519.

    Article  Google Scholar 

  69. Malachowski, K., Breger, J., Kwag, H. R., et al. (2014). Stimuli-responsive theragrippers for chemomechanical controlled release. Angewandte Chemie (International ed. in English), 53(31), 8045–8049.

    Article  Google Scholar 

  70. Leong, T. G., Randall, C. L., Benson, B. R., et al. (2009). Tetherless thermobiochemically actuated microgrippers. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 703–708.

    Article  Google Scholar 

  71. Yim, S., Gultepe, E., Gracias, D. H., et al. (2014). Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Transactions on Biomedical Engineering, 61(2), 513–521.

    Article  Google Scholar 

  72. Bassik, N., Brafman, A., Zarafshar, A. M., et al. (2010). Enzymatically triggered actuation of miniaturized tools. Journal of the American Chemical Society, 132(46), 16314–16317.

    Article  Google Scholar 

  73. Randall, C. L., Kalinin, Y. V., Jamal, M., et al. (2011). Self-folding immunoprotective cell encapsulation devices. Nanomedicine, 7(6), 686–689.

    Article  Google Scholar 

  74. Shim, T. S., Kim, S. H., Heo, C. J., et al. (2012). Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angewandte Chemie (International ed. in English), 51(6), 1420–1423.

    Article  Google Scholar 

  75. Stoychev, G., Puretskiy, N., & Ionov, L. (2011). Self-folding all-polymer thermoresponsive microcapsules. Soft Matter, 7(7), 3277–3279.

    Article  Google Scholar 

  76. Azam, A., Laflin, K. E., Jamal, M., et al. (2011). Self-folding micropatterned polymeric containers. Biomedical Microdevices, 13(1), 51–58.

    Article  Google Scholar 

  77. Fernandes, R., & Gracias, D. H. (2012). Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 64(14), 1579–1589.

    Article  Google Scholar 

  78. Yamamoto, Y., Harada, S., Yamamoto, D., et al. (2016). Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv, 2(11), e1601473.

    Article  Google Scholar 

  79. Yamamoto, D., Nakata, S., Kanao, K., et al. (2017). A planar, multisensing wearable health monitoring device integrated with acceleration, temperature, and electrocardiogram sensors. Advanced Materials Technologies, 2(7), 1700057.

    Article  Google Scholar 

  80. Yamamoto, D., Nakata, S., Kanao, K., et al. (2017). All-printed, planar-type multi-functional wearable flexible patch integrated with acceleration, temperature, and ECG sensors. In IEEE 30th International Conference on micro electro mechanical systems (MEMS) (pp. 239–242). IEEE.

  81. Guo, Y., Dun, C., Xu, J., et al. (2017). Ultrathin, washable, and large-area graphene papers for personal thermal management. Small, 13(44), 1702645.

    Article  Google Scholar 

  82. Xu, S., Yan, Z., Jang, K.-I., et al. (2015). Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347(6218), 154–159.

    Article  Google Scholar 

  83. Cho, J. H., Keung, M. D., Verellen, N., et al. (2011). Nanoscale origami for 3D optics. Small (Weinheim an der Bergstrasse, Germany), 7(14), 1943–1948.

    Article  Google Scholar 

  84. Yan, Z., Zhang, F., Liu, F., et al. (2016). Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2(9), e1601014.

    Article  Google Scholar 

  85. Wang, W., Li, C., Rodrigue, H., et al. (2017). Kirigami/origami-based soft deployable reflector for optical beam steering. Advanced Functional Materials, 27(7), 1604214.

    Article  Google Scholar 

  86. Nogi, M., Komoda, N., Otsuka, K., et al. (2013). Foldable nanopaper antennas for origami electronics. Nanoscale, 5(10), 4395–4399.

    Article  Google Scholar 

  87. Pandey, S., Macias, N., Ciobanu, C., et al. (2016). Assembly of a 3D cellular computer using folded E-blocks. Micromachines, 7(5), 78.

    Article  Google Scholar 

  88. Kang, M., & Kang, K.-T. (2018). Flexible 2-layer paper printed circuit board fabricated by inkjet printing for 3-D origami electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 421–426.

    Article  Google Scholar 

  89. Martinez, R. V., Fish, C. R., Chen, X., et al. (2012). Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 22(7), 1376–1384.

    Article  Google Scholar 

  90. Zhang, K., Qiu, C., & Dai, J. S. (2015). Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. Journal of Mechanisms and Robotics, 7(2), 021014-10.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) Grant funded through Basic Science Research Program (2017R1A2B3005706, NRF-2016R1A5A1938472) and Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Ko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.J., Won, P. & Ko, S.H. A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 147–161 (2019). https://doi.org/10.1007/s40684-019-00027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00027-2

Keywords

Navigation