Skip to main content

Advertisement

Log in

Series of forms, visual techniques, and quantitative devices: ordering the world between the end of the nineteenth and early twentieth centuries

  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

In this paper, I investigate the variety and richness of the taxonomical practices between the end of the nineteenth and the early twentieth centuries. During these decades, zoologists and paleontologists came up with different quantitative practices in order to classify their data in line with the new biological principles introduced by Charles Darwin. Specifically, I will investigate Florentino Ameghino’s mathematization of mammalian dentition and the quantitative practices and visualizations of several German-speaking paleontologists at the beginning of the twentieth century. In so doing, this paper will call attention to the visual and quantitative language of early twentieth-century systematics. My analysis will therefore contribute to a prehistory of the statistical frame of mind in biology, a study which has yet to be written in full. Second, my work highlights the productive intertwinement between biological practices and philosophical frameworks at the turn of the nineteenth century. Deeply rooted in Kantian bio-philosophy, several biologists sought to find rules in order to apply ordering principles to chaotic taxonomic information. This implies the necessity to investigate the neglected role of Kantian and Romantic bio-philosophy in the unfolding of twentieth-century biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See also Hacking (1990), Porter (1995) and Sepkoski and Tamborini (2018).

  2. Central to the statistical frame of mind adopted by biologists during the second half of the twentieth century is the idea that “the routine use of statistics, mediated by the computer could play both a heuristic and an analytical role in biological research” (Hagen 2003, p. 368). See also (Sokal 1969).

  3. On the relationship between Ameghino and Simpson see particularly (Novoa and Levine 2010; Podgorny 2005, 2018).

  4. Simpson spent 4 years in Patagonia studying Paleogene mammals. He extensively investigated and revised Ameghino’s work (Laporte 1987; Sereno 1982).

  5. Quantitative practices were also introduced in biogeography during at the of the eighteenth century. See for instance Ebach (2015). For the use quantitative in nineteenth-century natural history see footnote 20.

  6. As, for instance, Henry Shaler Williams (1947–1918) and Richard Swann Lull (1867–1957) did. See Lull (1917), Tamborini (2015b) and Williams (1895).

  7. On Ameghino see Caponi (2017, 2018), Novoa and Levine (2010) and Podgorny (2005, 2018).

  8. Translation in Levine and Novoa (2012, p. 201).

  9. Translation in Levine and Novoa (2012, pp. 201–202).

  10. On practice of displaying and ordering organisms in museums, see, for instance Kendig (2016), Rieppel L. (2012) and Tamborini and Vennen 2017).

  11. Translation in Levine and Novoa (2012, p. 202).

  12. Translation in Levine and Novoa (2012, p. 205).

  13. For instance, naturalist Richard Owen (1804–1892) published a monumental investigation of the teeth of mammal in his Odontography (1840–1845) (Owen 1845). On the relationship between Ameghenio and Owen see Podgorny (2018).

  14. Translation in Levine and Novoa (2012, p. 205).

  15. About transcendental Naturphilosophie see Huneman (2006), Rehbock (1990), Richards (2002), and Zammito (2017).

  16. See his 1889 lecture Visión y Realidad (Vision and Reality) translated in English in Levine and Novoa (2012).

  17. Translation in Levine and Novoa (2012, p. 212).

  18. Translation in Levine and Novoa (2012, p. 212).

  19. This was Ameghino’s main concern. He introduced these graphical visualizations so that his investigation was “understandable to everyone” (Ameghino 1884, p. 440).

  20. As Podgorny noted, “the so-called “mathematical classification” was a visual system for converting verbal descriptions into graphics, where the number of anatomical pieces and anatomical characters were transformed into formulas that reduced a page of words to a line of symbols” (Podgorny 2017, p. 32). On the practices of nineteenth-century data visualization, see for instance Archibald (2014), Hineline (1993), Rudwick (1967), Schäffner (1999) and Sepkoski and Tamborini (2018).

  21. See Esposito (2016) and Müller (2017).

  22. See the fifth footnote.

  23. See Waagen (1869).

  24. See for instance Davenport (1904, Goldschmidt (1911) and Johannensen (1909). On early twentieth-century statistics see for instance Coen (2007), Desrosières (1998), Hacking (1990) McOuat (2001) and (Porter 1986, 1995).

  25. Between the end of the nineteenth and the early twentieth centuries, the study of ontogeny was a common research topic among the biologists inspired by Kant and Romantic philosophy. See Esposito (2016).

  26. On this rich and fruitful tradition, see, for instance Ebach (2015), Fabrer (2000), Larson (1994), Müller-Wille (2017) and Sepkoski and Tamborini (2018).

  27. On the difference use of visualizations in natural history see, for example, Daston and Galison (2007), Nickelsen (2006), Sepkoski and Tamborini (2018) and Wittmann (2013).

  28. This position was also shared by Swiss zoologist and paleontologist Adolf Naef (1883–1939). See Rieppel O. 2012) and Rieppel (2016).

  29. This has deep implications for a possible encounter between a “true to nature” and a “mechanical” concept of objectivity at the beginning of the twentieth century. See Daston and Galison (2007) and Richards (2016).

References

  • Allen, G. E. (1975). Life science in the twentieth century. New York: Wiley.

    Google Scholar 

  • Ameghino, F. (1884). Filogenia: Principios de clasificación transformista, basados sobre leyes naturales y proporciones matemáticas. Buenos Aires: Editorial Acme.

    Google Scholar 

  • Ameghino, F. (1889). Visión y Realidad (Alegoría científica a propósito de “Filogenia”). Boletín del Instituto Geográfico Argentino, 10, 340–350.

    Google Scholar 

  • Anonymous. (1882). Congrès Géologique International: Compte Rendu 2me Session, Bologne, 1881. Bologne: Fava et Garagnani.

    Google Scholar 

  • Archibald, J. D. (2014). Aristotle’s ladder, Darwin’s tree: The evolution of visual metaphors for biolgoical order. New York: Columbia University Press.

    Google Scholar 

  • Bowler, P. J. (1996). Life’s splendid drama: Evolutionary biology and the reconstruction of life’s ancestry, 1860–1940. Chicago: The University of Chicago Press.

    Google Scholar 

  • Cain, J. (1989). Moving beyond consistency: The historical significance of Simpson’s Tempo and mode in evolution, Unpublished MA thesis. University of Maryland College Park.

  • Cain, J. (1993). Common problems and cooperative solutions: Organizational activity in evolutionary studies, 1936–1947. Isis, 84, 1–25.

    Google Scholar 

  • Caponi, G. (2017). El darwinismo de Ameghino: una lectura de Filogenia. Florianópolis: NEL/UFSC.

    Google Scholar 

  • Caponi, G. (2018). Las flechas de la evolución: Florentino Ameghino y las leyes de la filogenia. Scientiae Studia, 15, 365–386.

    Google Scholar 

  • Cassirer, E. (1969). The problem of knowledge: Philosophy, science, and history since Hegel. New Heven: Yale University.

    Google Scholar 

  • Coen, D. R. (2007). Vienna in the age of uncertainty. Science, liberalism, and private life. Chicago: Chicago University Press.

    Google Scholar 

  • Cuvier, G. (1813). Essay on the theory of the earth. Edinburgh: William Blackwood.

    Google Scholar 

  • Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.

    Google Scholar 

  • Davenport, C. B. (1904). Statistical methods with special reference to biological variation. New York: Wiley.

    Google Scholar 

  • Dawson, G. (2016). Show me the bone: Reconstructing prehistoric monsters in nineteenth-century britain and America. Chicago: The University of Chicago Press.

    Google Scholar 

  • Desrosières, A. (1998). The politics of large numbers. A history of statistical reasoning. Cambridge: Harvard University Press.

    Google Scholar 

  • Ebach, M. C. (2015). Origins of biogeography. The role of biological classification in early plant and animal geography. Dordrecht: Springer.

    Google Scholar 

  • Esposito, M. (2016). Romantic biology, 1890–1945. London: Routledge.

    Google Scholar 

  • Farber, P. L. (2000). Finding order in nature: The naturalist tradition from Linnaeus To E. O. Wilson. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Goldschmidt, R. B. (1911). Einführung in die Vererbungswissenschaft. Leipzig: Engelmann.

    Google Scholar 

  • Hacking, I. (1990). The taming of chance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hagen, J. (2003). The statistical frame of mind in systematic biology from Quantitative Zoology to Biometry. Journal of the History of Biology, 36, 353–384.

    Google Scholar 

  • Harrington, A. (1999). Reenchanted science: Holism in German culture from Wilhelm II to Hitler. Princeton: Princeton University Press.

    Google Scholar 

  • Hineline, M. L. (1993). The visual culture of the earth sciences, 1863–1970. San Diego: University of California.

    Google Scholar 

  • Huneman, P. (2006). Naturalising purpose: From comparative anatomy to the ‘adventure of reason’. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 649–674.

    Google Scholar 

  • Johannensen, W. (1909). Elemente der exakten Erblichkeitslehre. Jena: Fisher.

    Google Scholar 

  • Kant, I. (2000 (1790)). Critique of the power of judgment. Cambridge: Cambridge University Press.

  • Kant, I. (2004 (1786)). Metaphysical foundations of natural science. Cambridge: Cambridge University Press.

  • Kendig, C. (2016). Homologizing as kinding. In C. Kendig (Ed.), Natural kinds and classification in scientific practice (pp. 106–125). Abingdon: Routledge.

    Google Scholar 

  • Klähn, H. (1920). Der Wert der Variationsstatistik für die Paläontologie. Berichte d. Nat. Gesellsch. z. Freiburg, 22, 1–218.

    Google Scholar 

  • Laporte, L. F. (1987). Simple curiosity; Letters from George Gaylord Simpson to his family, 1921–1970. Berkeley: University of California Press.

    Google Scholar 

  • Laporte, L. F. (2000). George Gaylord Simpson: Paleontologist and evolutionist. New York: Columbia University Press.

    Google Scholar 

  • Larson, J. (1994). Interpreting nature: The science of living form from Linnaeus to Kant. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Leitch, D. (1951). Biometrics and systematics in relation to palaeontology. Proceedings of the Linnean Society of London, 162, 159–170.

    Google Scholar 

  • Levine, A., & Novoa, A. (2012). ¡Darwinistas! The construction of evolutionary thought in nineteenth century Argentina. Leiden: Brill.

    Google Scholar 

  • Lopes, M. M., & Podgorny, I. (2000). The shaping of Latin American museums of natural history, 1850–1990. Osiris, 15, 108–118.

    Google Scholar 

  • Lull, R. S. (1917). Organic evolution. New York: The Macmillan Company.

    Google Scholar 

  • McOuat, G. (2001). From cutting nature at its joints to measuring it: New kinds and new kinds of people in biology. Studies in History and Philosophy of Science Part A, 32, 613–645.

    Google Scholar 

  • Müller, G. B. (2017). Vivarium. Experimental, quantitative, and theoretical biology at Vienna’s Biologische Versuchsanstalt. Cambridge: MIT Press.

    Google Scholar 

  • Müller-Wille, S. (2017). Names and numbers: ‘Data’ in classical natural history. Osiris, 32, 109–128.

    Google Scholar 

  • Neumayr, M. (1874). Die Fauna der Schichten mit Aspidoceras acanthicum. Abhandlungen der Geologischen Bundesanstalt in Wien, 5, 141–257.

    Google Scholar 

  • Nickelsen, K. (2006). Botanists, draughtsmen and nature: The construction of eighteenth-century botanical illustrations. Berlin: Springer.

    Google Scholar 

  • Novoa, A., & Levine, A. (2010). From man to ape: Darwinism in Argentina, 1870–1920. Chicago: Chicago University Press.

    Google Scholar 

  • Nyhart, L. K. (1987). The disciplinary breakdown of German morphology, 1870–1900. Isis, 78, 365–389.

    Google Scholar 

  • Nyhart, L. K. (1995). Biology takes form. Animal morphology and the German Universities 1800–1900. Chicago: The University of Chicago Press.

    Google Scholar 

  • Owen, R. (1845). Odontography; or, A treatise on the comparative anatomy of teeth: Their physiological relations, mode of development, and microscopic structure in the vertebrate animals (Vol. 2). Paris: Hippolyte Bailliere.

    Google Scholar 

  • Podgorny, I. (2005). Bones and devices in the constitution of paleontology in Argentina at the end of the nineteenth century. Science in Context, 18, 249–283.

    Google Scholar 

  • Podgorny, I. (2015). Human origins in the New World? Florentino Ameghino and the emergence of prehistoric archaeology in the Americas (1875–1912). PaleoAmerica, 1, 68–80.

    Google Scholar 

  • Podgorny, I. (2017). Manifest ambiguity: Intermediate forms, variation, and mammal paleontology in Argentina, 1830–1880. Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 27–36.

    Google Scholar 

  • Podgorny, I. (2018). Florentino Ameghino y Hnos. Empresa Argentina de Paleontología Ilimitada. Buenos Aires: Edhasa.

    Google Scholar 

  • Porter, T. M. (1986). The rise of statistical thinking 1820–1900. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Porter, T. M. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Rehbock, P. F. (1990). Transcendental anatomy. In A. Cunningham & N. Jardine (Eds.), Romanticism and the sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Richards, R. J. (2002). The romantic conception of life: Science and philosophy in the age of Goethe. Chicago: The University of Chicago Press.

    Google Scholar 

  • Richards, R. J. (2008). The tragic sense of life. Ernst Haeckel and the Struggle over evolutionary thought. Chicago: The University of Chicago Press.

    Google Scholar 

  • Richards, R. J. (Ed). (2016). Objectivity and the theory of the archetype. In What reason promises. Essays on reason, nature and history. Berlin: De Gruyter.

  • Rieppel, L. (2012). Bringing dinosaurs back to life: Exhibiting prehistory at the American Museum of Natural History. Isis, 102, 460–490.

    Google Scholar 

  • Rieppel, O. (2012). Adolf Naef (1883–1949), systematic morphology and phylogenetics. Journal of Zoological Systematics and Evolutionary Research, 50, 2–13.

    Google Scholar 

  • Rieppel, O. (2016). Phylogenetic systematics: Haeckel to Hennig. London: CRC Press.

    Google Scholar 

  • Roe, A. (1985). 1984 Leona Tyler award address: Career and life. The Counseling Psychologist, 13, 311–326.

    Google Scholar 

  • Rudwick, M. J. S. (1967). The emergence of a visual language for geological science, 1760–1840. History of Science, 14, 149–195.

    Google Scholar 

  • Rudwick, M. J. S. (1997). Georges Cuvier, fossil bones, and geological catastrophes. Chicago: Chicago University Press.

    Google Scholar 

  • Schäffner, W. (1999). Verwaltung der Kultur. Alexander von Humboldts Medien (1799–1834). In S. Rieger, S. Schahadata, & M. Weinberg (Eds.), Interkultularität zwischen Inszenierung und Archiv. Tübingen: Narr.

    Google Scholar 

  • Sepkoski, D. (2012). Rereading the fossil record: the growth of paleobiology as an evolutionary discipline. Chicago: The University of Chicago Press.

    Google Scholar 

  • Sepkoski, D., & Tamborini, M. (2018). “An image of science”: Cameralism, statistics, and the visual language of natural history in the nineteenth century. Historical Studies in the Natural Sciences, 48, 56–109.

    Google Scholar 

  • Sereno, P. C. (1982). An early Eocene sirenian from Patagonia (Mammalia, Sirenia). American Museum novitates; no. 2729. American Museum Novitates, 2729, 1–10.

    Google Scholar 

  • Simpson, G. G. (1937a). The Fort Union of the Crazy Mountain Field, Montana, and its mammalian faunas. Bulletin of United States National Museum, 169, 1–287.

    Google Scholar 

  • Simpson, G. G. (1937b). Patterns of phyletic evolution. Bulletin of the Geological Society of America, 48, 303–313.

    Google Scholar 

  • Simpson, G. G. (1980). Why and how: Some problems and methods in historical biology. Oxford: Pergamon Press.

    Google Scholar 

  • Simpson, G. G. (1984). Discoverers of the lost world. New Haven: Yale University Press.

    Google Scholar 

  • Simpson, G. G., & Roe, A. (1939). Quantitative zoology. New York: Mc-Graw-Hill.

    Google Scholar 

  • Simpson, G. G., & Roe, A. (1942). A standard frequency distribution method. American Museum Novitates, 1190, 1–19.

    Google Scholar 

  • Sokal, R. R. R., & James, F. (1969). Biometry. The principles and practice of statistics in biology. San Francisco: W.H. Freeman.

    Google Scholar 

  • Tamborini, M. (2015a). Die Wurzeln der ideographischen Paläontologie: Karl Alfred von Zittels Praxis und sein Begriff des Fossils. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 23, 117–142.

    Google Scholar 

  • Tamborini, M. (2015b). Paleontology and Darwin’s theory of evolution: The subversive role of statistics at the end of the 19th century. Journal of the History of Biology, 48, 575–612.

    Google Scholar 

  • Tamborini, M. (2016). “If the Americans can do it, so can we”: How dinosaur bones shaped german paleontology. History of Science, 54, 225–256.

    Google Scholar 

  • Tamborini, M. (2017). The reception of Darwin in late nineteenth-century German paleontology as a case of pyrrhic victory. Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 37–45.

    Google Scholar 

  • Tamborini, M., & Vennen, M. (2017). Disruptions and changing habits: The case of the Tendaguru expedition. Museum History Journal, 10, 183–199.

    Google Scholar 

  • Vai, G. B. (2004). The second international geological Congress, Bologna, 1881. Episodes, 27, 13–20.

    Google Scholar 

  • von Bubnoff, S. (1919). Über einige grundlegende Prinzipien der paläontologischen Systematik. Zeitschrift für induktive Abstammungs- und Vererbungslehre, 21, l58–l68.

    Google Scholar 

  • von Bubnoff, S. (1921). Die ladinische Fauna von Forno (Mezzovalle) bei Predazzo. Heidelberg: Carl Winters Universitätsbuchhandlung.

    Google Scholar 

  • Waagen, W. H. (1869). Die Formenreihe des Ammonites subradiatus: Versuch einer paläontologischen Monographie. Geognostisch-Paläontologische Beiträge, 2, 179–256.

    Google Scholar 

  • Wedekind, R. (1916). Über die Grundlagen und Methoden der Biostratigraphie. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Williams, H. S. (1895). Geological biology. New York: Henry Holt and Company.

    Google Scholar 

  • Witteveen, J. (2015). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 1 of 2). Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 54, 20–33.

    Google Scholar 

  • Wittmann, B. (2013). Outlining species: Drawing as a research technique in contemporary biology. Science in Context, 26, 363–391.

    Google Scholar 

  • Zammito, J. H. (2017). The gestation of German biology. Philosophy and physiology from Stahl to Schelling. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Acknowledgments

I would like to thank David Sepkoski, Maurizio Esposito, Michele Cardani, and the two anonymous referees for their helpful suggestions on earlier versions of this paper. Furthermore, I thank Joeri Witteveen and Catherine Kendig for inviting me to this special issue and for their great and inspiring feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tamborini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamborini, M. Series of forms, visual techniques, and quantitative devices: ordering the world between the end of the nineteenth and early twentieth centuries. HPLS 41, 49 (2019). https://doi.org/10.1007/s40656-019-0282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-019-0282-x

Keywords

Navigation