Skip to main content

Advertisement

Log in

Convection and Climate: What Have We Learned from Simple Models and Simplified Settings?

  • Convection and Climate (C Muller, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We ask what fundamental insights about the relationship of tropical convection to climate have arisen from recent investigations using simplified models.

Recent Findings

The vertical distribution of relative humidity should remain approximately constant in a changed climate. The temperature of clouds in the upper troposphere should also remain effectively constant for climate changes likely to occur in response to human-induced warming. The fractional coverage of convective clouds will likely decrease slightly with warming, but it is not known how the albedo and net radiative effect of tropical convective clouds will change. The areal extent and net radiative effect of tropical convective clouds depend on the interactions of radiation, cloud physics, and turbulence within the extended upper-level ice clouds. SST gradients develop naturally as a result of the aggregation of convection and large-scale thermodynamics and circulation act to couple the cloud properties and the SST.

Summary

Radiative-convective equilibrium continues to provide insight into the structure and energy balance of the atmosphere by incorporating the interactions among radiation, cloud physics, and atmospheric motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manabe S, Wetherald RT. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci. 1967;24:241–59.

    Article  CAS  Google Scholar 

  2. Raval A, Ramanathan V. Observational determination of the greenhouse effect. Nature. 1989;342(6251):758–61.

    Article  Google Scholar 

  3. Soden BJ, Wetherald RT, Stenchikov GL, Robock A. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science. 2002;296(APR 26 2002):727–30.

    Article  CAS  Google Scholar 

  4. Koll DDB, Cronin TW. Earth’s outgoing longwave radiation linear due to H<sub>2</sub>O greenhouse effect. Proc Nat Acad Sci U S A. 2018;115:10293–8. https://doi.org/10.1073/pnas.1809868115.

    Article  CAS  Google Scholar 

  5. Romps DM. An analytical model for tropical relative humidity. J Clim. 2014;27(19):7432–49. https://doi.org/10.1175/jcli-d-14-00255.1.

    Article  Google Scholar 

  6. Pierrehumbert RT. Thermostats, radiator fins and the local runaway greenhouse. J Atmos Sci. 1995;52:1784–806.

    Article  Google Scholar 

  7. Sherwood SC. Maintenance of the free-tropospheric tropical water vapor distribution .2. Simulation by large-scale advection. J Clim. 1996;9(V 1996):2919–34.

    Article  Google Scholar 

  8. Salathe EP, Hartmann DL. A trajectory analysis of tropical upper-tropospheric moisture and convection. J Clim. 1997;10(OCT 1997):2533–47.

    Article  Google Scholar 

  9. Ming Y, Held IM. Modeling water vapor and clouds as passive tracers in an idealized GCM. J Clim. 2018;31(2):775–86. https://doi.org/10.1175/jcli-d-16-0812.1.

    Article  Google Scholar 

  10. Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J Clim. 2006;19(21):5686–99.

    Article  Google Scholar 

  11. Pendergrass AG, Hartmann DL. The atmospheric energy constraint on global-mean precipitation change. J Clim. 2014;27(2):757–68. https://doi.org/10.1175/jcli-d-13-00163.1.

    Article  Google Scholar 

  12. Jeevanjee N, Romps DM. Mean precipitation change from a deepening troposphere. Proc Nat Acad Sci U S A. 2018;115(45):11465–70. https://doi.org/10.1073/pnas.1720683115.

    Article  CAS  Google Scholar 

  13. Bretherton CS, Blossey PN, Khairoutdinov M. An energy-balance analysis of deep convective self-aggregation above uniform SST. J Atmos Sci. 2005;62(12):4273–92.

    Article  Google Scholar 

  14. Hartmann DL, Larson K. An important constraint on tropical cloud-climate feedback. Geophys Res Lett. 2002;29(20):1951–4. https://doi.org/10.1029/2002GL015835.

    Article  Google Scholar 

  15. Kuang Z, Hartmann DL. Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J Clim. 2007;20:2051–7. https://doi.org/10.1175/JCLI4124.1.

    Article  Google Scholar 

  16. Zelinka MD, Hartmann DL. Why is longwave cloud feedback positive? J Geophys Res Atmos. 2010;115:D16117. https://doi.org/10.1029/2010jd013817.

    Article  Google Scholar 

  17. Hartmann DL. Tropical anvil clouds and climate sensitivity. Proc Natl Acad Sci U S A. 2016;113(32):8897–9. https://doi.org/10.1073/pnas.1610455113.

    Article  CAS  Google Scholar 

  18. Hartmann DL, Gasparini B, Berry SE, Blossey PN. The life cycle and net radiative effect of tropical anvil clouds. J Adv Model Earth Sys. 2018;0(0). doi:doi:https://doi.org/10.1029/2018MS001484.

  19. Hartmann DL, Berry SE. The balanced radiative effect of tropical anvil clouds. JGeophys Res-Atmos. 2017;122(9):5003–20. https://doi.org/10.1002/2017jd026460.

    Article  Google Scholar 

  20. Held IM, Hemler RS, Ramaswamy V. Radiative-convective equilibrium with explicit two-dimensional moist convection. J Atmos Sci. 1993;50(23):3909–27.

    Article  Google Scholar 

  21. Tompkins AM, Craig GC. Radiative-convective equilibrium in a three-dimensional cloud-ensemble model. Quart J Roy Meteor Soc. 1998;124(550):2073–97.

    Google Scholar 

  22. Tompkins AM, Craig GC. Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Quart J Royal Meteorol Soc. 1998;124(552):2693–713.

    Google Scholar 

  23. Tompkins AM, Craig GC. Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J Clim. 1999;12(2):462–76.

    Article  Google Scholar 

  24. Tompkins AM. On the relationship between tropical convection and sea surface temperature. J Clim. 2001;14(5):633–7. https://doi.org/10.1175/1520-0442(2001)014<0633:otrbtc>2.0.co;2.

    Article  Google Scholar 

  25. Su H, Bretherton CS, Chen SS. Self-aggregation and large-scale control of tropical deep convection: a modeling study. J Atmos Sci. 2000;57(JUN 1 2000):1797–816.

    Article  Google Scholar 

  26. Held IM, Zhao M, Wyman B. Dynamic radiative-convective equilibria using GCM column physics. J Atmos Sci. 2007;64(1):228–38.

    Article  Google Scholar 

  27. Tompkins AM. Organization of tropical convection in low vertical wind shears: the role of water vapor. J Atmos Sci. 2001;58(6):529–45. https://doi.org/10.1175/1520-0469(2001)058<0529:ootcil>2.0.co;2.

    Article  Google Scholar 

  28. Wing AA, Emanuel KA. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J Adv Model Earth Sys. 2014;6(1):59–74. https://doi.org/10.1002/2013ms000269.

    Article  Google Scholar 

  29. Muller CJ, Held IM. Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J Atmos Sci. 2012;69(8):2551–65. https://doi.org/10.1175/jas-d-11-0257.1.

    Article  Google Scholar 

  30. Craig GC, Mack JM. A coarsening model for self-organization of tropical convection. J Geophys Res-Atmos. 2013;118(16):8761–9. https://doi.org/10.1002/jgrd.50674.

    Article  Google Scholar 

  31. Muller C, Bony S. What favors convective aggregation and why? Geophys Res Lett. 2015;42(13):5626–34. https://doi.org/10.1002/2015gl064260.

    Article  Google Scholar 

  32. Jeevanjee N, Romps DM. Convective self-aggregation, cold pools, and domain size. Geophys Res Lett. 2013;40(5):994–8. https://doi.org/10.1002/grl.50204.

    Article  Google Scholar 

  33. Cronin TW, Wing AA. Clouds, circulation, and climate sensitivity in a radiative-convective equilibrium channel model. J Adv Model Earth Sys. 2017;9(8):2883–905. https://doi.org/10.1002/2017ms001111.

    Article  Google Scholar 

  34. Neelin JD, Sahany S, Stechmann SN, Bernstein DN. Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc Nat Acad Sci U S A. 2017;114(6):1258–63. https://doi.org/10.1073/pnas.1615333114.

    Article  CAS  Google Scholar 

  35. Muller CJ, O'Gorman PA, Back LE. Intensification of precipitation extremes with warming in a cloud-resolving model. J Clim. 2011;24(11):2784–800. https://doi.org/10.1175/2011jcli3876.1.

    Article  Google Scholar 

  36. Romps DM. Response of tropical precipitation to global warming. J Atmos Sci. 2011;68(1):123–38. https://doi.org/10.1175/2010jas3542.1.

    Article  Google Scholar 

  37. Singh MS, O'Gorman PA. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys Res Lett. 2014;41(16):6037–44. https://doi.org/10.1002/2014gl061222.

    Article  Google Scholar 

  38. Pfahl S, O'Gorman PA, Fischer EM. Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change. 2017;7(6):423−+. https://doi.org/10.1038/nclimate3287.

  39. Nie J, Sobel AH, Shaevitz DA, Wang SG. Dynamic amplification of extreme precipitation sensitivity. Proc Nat Acad Sci US A. 2018;115(38):9467–72. https://doi.org/10.1073/pnas.1800357115.

    Article  CAS  Google Scholar 

  40. Singh MS, O'Gorman PA. Increases in moist-convective updraught velocities with warming in radiative-convective equilibrium. Quart J Roy Meteorol Soc. 2015;141(692):2828–38. https://doi.org/10.1002/qj.2567.

    Article  Google Scholar 

  41. Singh MS, O'Gorman PA. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys Res Lett. 2013;40(16):4398–403. https://doi.org/10.1002/grl.50796.

    Article  Google Scholar 

  42. Singh MS, Kuang ZM, Maloney ED, Hannah WM, Wolding BO. Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc Natl Acad Sci U S A. 2017;114(44):11657–62. https://doi.org/10.1073/pnas.1707603114.

    Article  CAS  Google Scholar 

  43. Seeley JT, Romps DM. Why does tropical convective available potential energy (CAPE) increase with warming? Geophys Res Lett. 2015;42(23). https://doi.org/10.1002/2015gl066199.

  44. Bretherton CS, Park S. A new bulk shallow-cumulus model and implications for penetrative entrainment feedback on updraft buoyancy. J Atmos Sci. 2008;65(7):2174–93. https://doi.org/10.1175/2007jas2242.1.

    Article  Google Scholar 

  45. Bretherton CS. Insights into low-latitude cloud feedbacks from high-resolution models. Phil Trans Roy Soc A. 2015;373(2054). https://doi.org/10.1098/rsta.2014.0415.

  46. Stevens B, Bony S, Webb M. Clouds on-off klimate intercomparison experiment (COOKIE). Tech. rep.2013.

  47. Harrop BE, Hartmann DL. The role of cloud radiative heating in determining the location of the ITCZ in Aquaplanet simulations. J Clim. 2016;29(8):2741–63. https://doi.org/10.1175/jcli-d-15-0521.1.

    Article  Google Scholar 

  48. Watt-Meyer O, Frierson DMW. Local and remote impacts of atmospheric cloud radiative effects onto the eddy-driven jet. Geophys Res Lett. 2017;44(19):10,036–10,44. https://doi.org/10.1002/2017GL074901.

  49. Voigt A, Shaw TA. Impact of regional atmospheric cloud radiative changes on shifts of the extratropical jet stream in response to global warming. J Clim. 2016;29(23):8399–421. https://doi.org/10.1175/jcli-d-16-0140.1.

    Article  Google Scholar 

  50. Ceppi P, Hartmann DL. Clouds and the atmospheric circulation response to warming. JClimate. 2016;29(2):783–99. https://doi.org/10.1175/jcli-d-15-0394.1.

    Article  Google Scholar 

  51. Dobbie S, Jonas P. Radiative influences on the structure and lifetime of cirrus clouds. Quart J Roy Meteorol Soc. 2001;127(578):2663–82. https://doi.org/10.1256/smsqj.57807.

    Article  Google Scholar 

  52. Wall CJ, Hartmann DL. Balanced cloud radiative effects across a range of dynamical conditions over the tropical West Pacific. Geophys Res Lett. 2018;45(20):11490–8. https://doi.org/10.1029/2018gl080046.

    Article  Google Scholar 

  53. Folkins I, Loewenstein M, Podolske J, Oltmans SJ, Proffitt M. A barrier to vertical mixing at 14 km in the tropics: evidence from ozonesondes and aircraft measurements. J Geophys Res Atmos. 1999;104(SEP 27 1999):22095–102.

    Article  CAS  Google Scholar 

  54. Hartmann DL, Holton JR, Fu Q. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys Res Lett. 2001;28(10):1969–72.

    Article  Google Scholar 

  55. Folkins I. Origin of lapse rate changes in the upper tropical troposphere. J Atmos Sci. 2002;59(5):992–1005.

    Article  Google Scholar 

  56. Harrop BE, Hartmann DL. Testing the role of radiation in determining tropical cloud-top temperature. JClimate. 2012;25(17):5731–47. https://doi.org/10.1175/jcli-d-11-00445.1.

    Article  Google Scholar 

  57. Thompson DWJ, Bony S, Li Y. Thermodynamic constraint on the depth of the global tropospheric circulation. Proc Nat Acad Sci U S A. 2017;114(31):8181–6. https://doi.org/10.1073/pnas.1620493114.

    Article  CAS  Google Scholar 

  58. Thompson DWJ, Ceppi P, Yi Y. Testing a key constraint on extratropical tropopause height J Climate. 2018:submitted.

  59. Seeley JT, Jeevanjee N, Langhans W, Romps DM. Formation of tropical anvil clouds by slow evaporation. Geophys Res Lett 0(0). https://doi.org/10.1029/2018GL080747.

  60. Seeley JT, Jeevanjee N, Romps DM. FAT or FiTT: are anvil clouds or the tropopause temperature-invariant? Geophys Res Lett.0(ja). https://doi.org/10.1029/2018GL080096.

  61. Romps DM, Kuang ZM. Do undiluted convective plumes exist in the upper tropical troposphere? J Atmos Sci. 2010;67(2):468–84. https://doi.org/10.1175/2009jas3184.1.

    Article  Google Scholar 

  62. Hartmann DL. Global Physical Climatology. 2nd ed. Elsevier; 2016.

  63. de Rooy WC, Bechtold P, Frohlich K, Hohenegger C, Jonker H, Mironov D, et al. Entrainment and detrainment in cumulus convection: an overview. Q J R Meteorol Soc. 2013;139(670):1–19. https://doi.org/10.1002/qj.1959.

    Article  Google Scholar 

  64. Khairoutdinov MF, Randall DA. Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J Atmos Sci. 2003;60(4):607–25.

    Article  Google Scholar 

  65. Clough SA, Shephard MW, Mlawer E, Delamere JS, Iacono M, Cady-Pereira K, et al. Atmospheric radiative transfer modeling: a summary of the AER codes. J Quanti Spectros Rad Trans. 2005;91(2):233–44. https://doi.org/10.1016/j.jqsrt.2004.05.058.

    Article  CAS  Google Scholar 

  66. Morrison H, Milbrandt JA. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: scheme description and idealized tests. J Atmos Sci. 2015;72(1):287–311. https://doi.org/10.1175/jas-d-14-0065.1.

    Article  Google Scholar 

  67. Glenn IB, Krueger SK. Downdrafts in the near cloud environment of deep convective updrafts. J Adv Model Earth Sys. 2014;6(1):1–8. https://doi.org/10.1002/2013ms000261.

    Article  Google Scholar 

  68. Katzwinkel J, Siebert H, Heus T, Shaw RA. Measurements of turbulent mixing and subsiding shells in trade wind cumuli. J Atmos Sci. 2014;71(8):2810–22. https://doi.org/10.1175/jas-d-13-0222.1.

    Article  Google Scholar 

  69. Kuang ZM, Bretherton CS. Convective influence on the heat balance of the tropical tropopause layer: a cloud-resolving model study. J Atmos Sci. 2004;61(23):2919–27.

    Article  Google Scholar 

  70. Popke D, Stevens B, Voigt A. Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J Adv Model Earth Sys. 2013;5(1):1–14. https://doi.org/10.1029/2012ms000191.

    Article  Google Scholar 

  71. Reed KA, Medeiros B, Bacmeister JT, Lauritzen PH. Global radiative-convective equilibrium in the community atmosphere model, version 5. J Atmos Sci. 2015;72(5):2183–97. https://doi.org/10.1175/jas-d-14-0268.1.

    Article  Google Scholar 

  72. Coppin D, Bony S. Internal variability in a coupled general circulation model in radiative-convective equilibrium. Geophys Res Lett. 2017;44(10):5142–9. https://doi.org/10.1002/2017gl073658.

    Article  Google Scholar 

  73. Hohenegger C, Stevens B. Coupled radiative convective equilibrium simulations with explicit and parameterized convection. J Adv Model Earth Sys. 2016;8(3):1468–82. https://doi.org/10.1002/2016ms000666.

    Article  Google Scholar 

  74. Arnold NP, Putman WM. Nonrotating convective self-aggregation in a limited area AGCM. J Adv Model Earth Sys. 2018;10(4):1029–46. https://doi.org/10.1002/2017ms001218.

    Article  Google Scholar 

  75. Bony S, Stevens B, Coppin D, Becker T, Reed K, Voigt A, et al. Thermodynamic control of anvil-cloud amount. Proc Nat Acad Sci U S A. 2016;113(32):8927–32. https://doi.org/10.1073/pnas.1601472113.

    Article  CAS  Google Scholar 

  76. Kiehl JT. On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J Clim. 1994;7(4):559–65.

    Article  Google Scholar 

  77. Hartmann DL, Moy LA, Fu Q. Tropical convection and the energy balance at the top of the atmosphere. J Clim. 2001;14(24):4495–511. https://doi.org/10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2.

    Article  Google Scholar 

  78. Wall CJ, Hartmann DL, Thieman MM, Smith WL, Minnis P. The life cycle of anvil clouds and the top-of-atmosphere radiation balance over the tropical West Pacific. J Clim. 2018;31(24):10059–80. https://doi.org/10.1175/jcli-d-18-0154.1.

    Article  Google Scholar 

  79. Becker T, Stevens B, Hohenegger C. Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation. J Adv Model Earth Sys. 2017;9(2):1488–505. https://doi.org/10.1002/2016ms000865.

    Article  Google Scholar 

  80. Coppin D, Bony S. On the interplay between convective aggregation, surface temperature gradients, and climate sensitivity. J Adv Model Earth Sys. 2018;10(12):3123–38. https://doi.org/10.1029/2018MS001406.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Tim Cronin and an anonymous reviewer for very helpful comments and suggestions.

Funding

Support was from the National Science Foundation under Grant AGS-1549579 and from the Regional and Global Climate Modeling Program of the Office of Science of the U.S. Department of Energy (DE-SC0012580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis L. Hartmann.

Ethics declarations

Conflict of Interest

The authors state that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Convection and Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, D.L., Blossey, P.N. & Dygert, B.D. Convection and Climate: What Have We Learned from Simple Models and Simplified Settings?. Curr Clim Change Rep 5, 196–206 (2019). https://doi.org/10.1007/s40641-019-00136-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-019-00136-9

Keywords

Navigation