Skip to main content

Advertisement

Log in

Modeling the effects of salt stress and temperature on seed germination of cucumber using halothermal time concept

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The Halothermal time model (HaloTT) as a robust framework can accurately be used to simultaneously quantify the effect of both salt stress and temperature (T) on the dynamics of seed germination (SG) in different crops. The parameters of this model can be easily physiologically interpreted and explain how environmental factors interfere in regulating the SG response into seed population. A total of 75 seeds were used for germination tests. Five constant Ts, including 15, 20, 25, 30 and 35 °C, which at each of the following four levels of salinity (75, 150, 225 and 300 mM) were used. The effects of T and salinity on SG characteristics were studied using a HaloTT model. Also, cardinal temperatures were estimated and accumulation of Na+ and Cl into the seeds were investigated. Results showed that the HaloTT model could quantify well the effect of salinity on SG of cucumber over sub- and supra-optimal Ts (R2 > 0.80). Based on the model, the cardinal Ts in water were 10.4, 28.7 and 38.5 °C. At To, the NaClb(50) was 337 mM equal to − 1.49 MPa when it was converted to the ψb(50). The thresholds decreased linearly at T ≥ To (slope of the linear model (kT) = 33.9 mM °C−1), then reached 0 mM at Tc while the ψb(50) increased linearly becoming less negative at T ≥ To (kT = 0.150 MPa °C−1), then reached 0 MPa at Tc. Seed Na+ and Cl uptake increased significantly with T, and seed ψ was lower at each T under salt stress (depending on NaCl concentration), when compared to the control. Our results indicate that seed salt uptake was sufficient for germination at lower ψs under low and moderate salinity levels, and that SG is primarily controlled by the osmotic effect and, then, by the ion toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5 

Similar content being viewed by others

References

  • Abdel-Haleem A, El-Shaieny H (2015) Seed germination percentage and early seedling establishment of five (Vigna unguiculata L. (Walp) genotypes under salt stress. Eur J Exp Biol 5(2):22–32

    Google Scholar 

  • Abdel Latef A (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun. https://doi.org/10.1556/CRC.38.2010.1.5

    Article  Google Scholar 

  • Abdellaoui R, Boughalleb F, Zayoud D, Neffati M, Bakhshandeh E (2019) Quantification of Retama raetam seed germination response to temperature and water potential using hydrothermal time concept. Environ Exp Bot 157:211–216

    Article  Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231(2):243–254

    Article  CAS  Google Scholar 

  • Alvarado V, Bradford K (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25(8):1061–1069

    Article  Google Scholar 

  • Alvarado V, Bradford KJ (2005) Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Sci Res 15(2):77–88

    Article  Google Scholar 

  • Arnold S, Kailichova Y, Baumgartl T (2014) Germination of Acacia harpophylla (Brigalow) seeds in relation to soil water potential: implications for rehabilitation of a threatened ecosystem. PeerJ 2:e268

    Article  PubMed  PubMed Central  Google Scholar 

  • Atashi S, Bakhshandeh E, Mehdipour M, Jamali M, Teixeira da Silva JA (2015) Application of a hydrothermal time seed germination model using the Weibull distribution to describe base water potential in zucchini (Cucurbita pepo L.). J Plant Growth Regul 34:150–157

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Gholamhossieni M (2019) Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. J Plant Growth Regul 38:1–10

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Atashi S, Hafez-Nia M, Pirdashti H (2013) Quantification of the response of germination rate to temperature in sesame (Sesamum indicum). Seed Sci Technol 41(3):469–473

    Article  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Vahabinia F, Gholamhossieni M (2019) Quantification of the effect of environmental factors on seed germination and seedling growth of Eruca (Eruca sativa) using mathematical models. J Plant Growth Regul 39:1–15

    Google Scholar 

  • Bakhshandeh E, Bradford KJ, Pirdashti H, Vahabinia F, Abdellaoui R (2020) A new halothermal time model describing seed germination responses to salinity across both sub-and supra-optimal temperatures. Acta Physiol Plant 42:137. https://doi.org/10.1007/s11738-020-03126-9

    Article  CAS  Google Scholar 

  • Bannari A, Al-Ali ZM (2020) Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using landsat TM, ETM+ and OLI data. Remote Sens 12:2794

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, p 1600

    Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York, p 407

    Book  Google Scholar 

  • Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50(2):248–260

    Article  CAS  Google Scholar 

  • Bradford KJ (2018) Interpreting biological variation: seeds, populations and sensitivity thresholds. Seed Sci Res 28(3):158–167

    Article  Google Scholar 

  • Bradford KJ, Still DW (2004) Applications of hydrotime analysis in seed testing. Seed Technol 26(1):75–85

    Google Scholar 

  • Cardoso VJM, Bianconi A (2013) Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Acta Sci Biol Sci 35(2):255–261

    Article  Google Scholar 

  • Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS J Integr Biol 15(11):763–774

    Article  CAS  Google Scholar 

  • Estefan G, Sommer R, Ryan J (2013) Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region, International Center for Agricultural Research in the Dry Areas (ICARDA), p 244

  • Faize M, Nicolás E, Faize L, Díaz-Vivancos P, Burgos L, Hernández JA (2015) Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp Plant Physiol 27:215–226

    Article  Google Scholar 

  • Fan H-F, Du C-X, Ding L, Xu Y-L (2013) Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol Planta 35(9):2707–2719

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) http://www.fao.org/faostat/en/#data.QC. Accessed Jan 2018

  • Finch-Savage WE, Rowse HR, Dent KC (2005) Development of combined imbibition and hydrothermal threshold models to simulate maize (Zea mays) and chickpea (Cicer arietinum) seed germination in variable environments. New Phytol 165(3):825–838

    Article  CAS  PubMed  Google Scholar 

  • Gummerson RJ (1986) The effect of constant temperatures and osmotic potential on the germination of sugar beet. J Exp Bot 37:729–741

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Heshmat O, Saeed H, Fardin K (2011) The improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stress. J Agric Sci Technol 7(3):611–622

    Google Scholar 

  • Horak MJ, Sweat JK (1994) Germination, emergence, and seedling establishment of buffalo gourd (Cucurbita foetidissima). Weed Sci 42(3):358–363

    Article  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136(1):2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Zhang L, Wang J, You Y (2013) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Poloniae 82(3):193–197

    Article  CAS  Google Scholar 

  • International Seed Testing Association (ISTA) (2018) International rules for seed testing. Seed Science and Technology, Zurich

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biodivers Environ Sci 5(15):159–163

    Google Scholar 

  • Khan MA, Qaiser M (2006) Sabkha ecosystems. Springer, Berlin, pp 129–153

    Google Scholar 

  • Khan M, Weber D, Hess W (1985) Elemental distribution in seeds of the halophytes Salicornia pacifica var. utahensis and Atriplex canescens. Am J Bot 72(11):1672–1675

    Article  CAS  Google Scholar 

  • Kissmann C, Habermann G (2014) Different approaches on seed germination to look into global warming effects on Araucaria angustifolia. Theor Exp Plant Physiol 26:39–47

    Article  Google Scholar 

  • Kurtar ES (2010) Modelling the effect of temperature on seed germination in some cucurbits. African J Biotechnol 9(9):1343–1353

    Article  Google Scholar 

  • Liu S, Bradford KJ, Huang Z, Venable DL (2020) Hydrothermal sensitivities of seed populations underlie fluctuations of dormancy states in an annual plant community. Ecology 101(3):e02958

    Article  PubMed  Google Scholar 

  • Llanes A, Andrade A, Alemano S, Luna V (2016) Alterations of endogenous hormonal levels in plants under drought and salinity. Am J Plant Sci 7:1357–1371

    Article  CAS  Google Scholar 

  • Marcos Filho J (2015) Seed vigor testing: an overview of the past, present and future perspective. Sci Agric 72(4):363–374

    Article  Google Scholar 

  • Markovskaya EF, Sherudilo EG, Sysoeva MI (2007) Cucumber seed germination: effect and after- effect of temperature treatments. Seed Sci Biotechnol 1(2):25–31

    Google Scholar 

  • Mesgaran MB, Onofri A, Mashhadi HR, Cousens RD (2017) Water availability shifts the optimal temperatures for seed germination: a modelling approach. Ecol Model 351:87–95

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20

    Article  Google Scholar 

  • Misra N, Dwivedi U (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166(5):1135–1142

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination-still a mystery. Plant Sci 179(6):574–581

    Article  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Parmoon G, Moosavi SA, Siadat SA (2018) How salinity stress influences the thermal time requirements of seed germination in Silybum marianum and Calendula officinalis. Acta Physiol Planta 40(9):175

    Article  CAS  Google Scholar 

  • Passam H, Kakouriotis D (1994) The effects of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci Hortic 57(3):233–240

    Article  Google Scholar 

  • Pinheiro DT, Silva ALd, Silva LJd, Sekita MC, Dias DCFdS (2016) Germination and antioxidant action in melon seeds exposed to salt stress. Pesquisa Agropecuária Trop 46(3):336–342

    Article  Google Scholar 

  • Pinheiro C, Ribeiro IC, Reisinger V, Planchon S, Veloso MM, Renaut J, Eichacker L, Ricardo CP (2018) Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theor Exp Plant Physiol 30:113–127

    Article  CAS  Google Scholar 

  • Rowse H, Finch-Savage W (2003) Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub-and supra-optimal temperatures. New Phytol 158(1):101–108

    Article  Google Scholar 

  • Russo VM, Biles CL (1996) Incubation temperature affects cha, ges in cucumber seed proteins and mineral content. Seed Sci Technol 24:339–346

    Google Scholar 

  • Salk A, Arın L, Deveci M, Polat S (2008) Special vegetable growing. Turkish, Tekirdag, p 488, ISBN 978-9944-0786-9940-9943

  • Sarker A, Hossain MI, Kashem MA (2014) Salinity (NaCl) tolerance of four vegetable crops during germination and early seedling growth. Int J Recent Trends Sci Technol 3(1):91–95

    Google Scholar 

  • SAS Institute (2013) SAS/STAT user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Seal CE, Barwell LJ, Flowers TJ, Wade EM, Pritchard HW (2018) Seed germination niche of the halophyte Suaeda maritima to combined salinity and temperature is characterised by a halothermal time model. Environ Exp Bot 155:177–184

    Article  CAS  Google Scholar 

  • Shaygan M, Baumgartl T, Arnold S (2017) Germination of Atriplex halimus seeds under salinity and water stress. Ecol Eng 102:636–640

    Article  Google Scholar 

  • Simon EW, Minchin A, McMenamin M, Smith JM (1976) The low temperature limit for seed germination. New Phytol 77:301–311

    Article  Google Scholar 

  • Song J, Feng G, Tian C, Zhang F (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Ann Bot 96(3):399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51(343):275–286

    Article  CAS  PubMed  Google Scholar 

  • Thiam M, Champion A, Diouf D, Ourèye SYM (2013) NaCl effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. ISRN Biotechnol. https://doi.org/10.5402/2013/382417

    Article  PubMed  PubMed Central  Google Scholar 

  • Thygerson T, Harris JM, Smith BN, Hansen LD, Pendleton RL, Booth DT (2002) Metabolic response to temperature for six populations of winterfat (Eurotia lanata). Thermochim Acta 394:211–217

    Article  CAS  Google Scholar 

  • Tingle CH, Chandler JM (2003) Influence of environmental factors on smellmelon (Cucumis melo var. dudaim Naud.) germination, emergence, and vegetative growth. Weed Sci 51(1):56–59

    Article  CAS  Google Scholar 

  • Uzun S, Marangoz D, Özkaraman F (2001) Modelling the time elapsing from seed sowing to emergence in some vegetable crops. Pak J Biol Sci 4(4):442–445

    Article  Google Scholar 

  • Vahabinia F, Pirdashti H, Bakhshandeh E (2019) Environmental factors’ effect on seed germination and seedling growth of chicory (Cichorium intybus L.) as an important medicinal plant. Acta Physiol. Planta. 41(2):27

    Article  CAS  Google Scholar 

  • Van’t Hoff JH, (1887) Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z für Phys Chem 1(1):481–508

    Article  Google Scholar 

  • Wang B, Zhang J, Xia X, Zhang W-H (2011) Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in the presence of sodium chloride. Plant Growth Regul 65(2):407

    Article  CAS  Google Scholar 

  • Zavariyan AM, Rad MY, Asghari M (2015) Effect of seed priming by potassium nitrate on germination and biochemical indices in Silybum marianum L. under salinity stress. Int J Life Sci 9(1):23–29

    Article  Google Scholar 

  • Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P (2010) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot 106(6):1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57(3):269–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT) and Sari Agricultural Sciences and Natural Resources University (SANRU) (Grant ID: D.2169.97.31). The authors would also like to thank Miss Fatemeh Vahabinia for her assistance with the collection of some experimental data during this research.

Author information

Authors and Affiliations

Authors

Contributions

EB designed and performed the experiments. EB conducted the modeling. EB, RA and FB interpreted the data. EB, RA and FB co-wrote all drafts of the paper and also approved the final draft for submission.

Corresponding author

Correspondence to Raoudha Abdellaoui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, E., Abdellaoui, R. & Boughalleb, F. Modeling the effects of salt stress and temperature on seed germination of cucumber using halothermal time concept. Theor. Exp. Plant Physiol. 33, 79–93 (2021). https://doi.org/10.1007/s40626-021-00196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-021-00196-z

Keywords

Navigation