Skip to main content

Advertisement

Log in

Oxidative stress and macrophage infiltration in IgA nephropathy

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the interactions among serum levels of galactose-deficient IgA1 (Gd-IgA1), oxidative stress and macrophage infiltration and their clinical correlates in patients with IgA Nephropathy (IgAN).

Methods

A total of 47 patients with biopsy-proven primary IgAN, aged between 16 and 79 years, with a follow-up period ≥ 1 year or who showed progression to end stage kidney disease (ESKD) regardless the duration of follow-up were included. Study endpoint was the progression to ESKD. Serum Gd-IgA1 and advanced oxidation protein product (AOPP) levels were measured using ELISA assays. Kidney biopsies were evaluated according to the Oxford MEST-C scoring, with C4d and CD68 staining.

Results

Seventeen patients (36%) experienced ESKD during a median follow-up time of 6 years (IQR 3.7–7.5). Serum AOPP levels were correlated with the intensity of glomerular C3 deposition (r = 0.325, p = 0.026), glomerular (r = 0.423, p = 0.003) and interstitial CD68 + cell count (r = 0.298, p = 0.042) and Gd-IgA1 levels (r = 0.289, p = 0.049). Serum Gd-IgA1 levels were correlated with the intensity of C3 deposition (r = 0.447, p = 0.002). eGFR at biopsy (adjusted HR (aHR) 0.979 p = 0.011), and E score (aHR, 8.305, p = 0.001) were associated with progression to ESKD in multivariate analysis. 5-year ESKD-free survival rate was significantly lower in patients with higher E score compared to patients with E score 0 [p = 0.021].

Conclusions

An increased number of macrophages in the glomerular and tubulointerstitial area may play a role in oxidative stress and complement system activation. Endocapillary hypercellularity is a predictive factor for poor prognosis in IgAN.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Caliskan Y, Kiryluk K (2014) Novel biomarkers in glomerular disease. Adv Chronic Kidney Dis 21(2):205–216

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kiryluk K, Li Y, Scolari F et al (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46(11):1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Temurhan S, Akgul SU, Caliskan Y et al (2017) A Novel Biomarker for Post-Transplant Recurrent IgA Nephropathy. Transplant Proc 49(3):541–545

  4. Gharavi AG, Kiryluk K, Choi M et al (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43(4):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moura IC, Arcos-Fajardo M, Sadaka C et al (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15(3):622–634

    Article  CAS  PubMed  Google Scholar 

  6. Amore A, Cirina P, Conti G, Brusa P, Peruzzi L, Coppo R (2001) Glycosylation of circulating IgA in patients with IgA nephropathy modulates proliferation and apoptosis of mesangial cells. J Am Soc Nephrol 12(9):1862–1871

    Article  CAS  PubMed  Google Scholar 

  7. Novak J, Tomana M, Matousovic K et al (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67(2):504–513

    Article  CAS  PubMed  Google Scholar 

  8. Gharavi AG, Moldoveanu Z, Wyatt RJ et al (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19(5):1008–1014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gomez-Guerrero C, Lopez-Franco O, Suzuki Y et al (2002) Nitric oxide production in renal cells by immune complexes: Role of kinases and nuclear factor-kappaB. Kidney Int 62(6):2022–2034

    Article  CAS  PubMed  Google Scholar 

  10. Chen HC, Guh JY, Chang JM, Lai YH (2001) Differential effects of circulating IgA isolated from patients with IgA nephropathy on superoxide and fibronectin production of mesangial cells. Nephron 88(3):211–217

    Article  CAS  PubMed  Google Scholar 

  11. Caliskan Y, Ozluk Y, Celik D et al (2016) The Clinical Significance of Uric Acid and Complement Activation in the Progression of IgA Nephropathy. Kidney Blood Press Res 41(2):148–157

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki D, Miyata T, Saotome N et al (1999) Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 10(4):822–832

    Article  CAS  PubMed  Google Scholar 

  13. Chen JX, Zhou JF, Shen HC (2005) Oxidative stress and damage induced by abnormal free radical reactions and IgA nephropathy. J Zhejiang Univ Sci B 6(1):61–68

    Article  PubMed  CAS  Google Scholar 

  14. Vas T, Wagner Z, Jenei V et al (2005) Oxidative stress and non-enzymatic glycation in IgA nephropathy. Clin Nephrol 64(5):343–351

    Article  CAS  PubMed  Google Scholar 

  15. Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T et al (2004) Early prediction of IgA nephropathy progression: proteinuria and AOPP are strong prognostic markers. Kidney Int 66(4):1606–1612

    Article  CAS  PubMed  Google Scholar 

  16. Camilla R, Suzuki H, Dapra V et al (2011) Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol 6(8):1903–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166(12 Pt 2):S4–S8

    Article  PubMed  Google Scholar 

  18. Eddy A (2001) Role of cellular infiltrates in response to proteinuria. Am J Kidney Dis 37(1) (Suppl 2):S25–S29

    Article  CAS  PubMed  Google Scholar 

  19. Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57(6):2375–2385

    Article  CAS  PubMed  Google Scholar 

  20. Myllymaki JM, Honkanen TT, Syrjanen JT et al (2007) Severity of tubulointerstitial inflammation and prognosis in immunoglobulin A nephropathy. Kidney Int 71(4):343–348

    Article  CAS  PubMed  Google Scholar 

  21. Maruhashi Y, Nakajima M, Akazawa H et al (2004) Analysis of macrophages in urine sediments in children with IgA nephropathy. Clin Nephrol 62(5):336–343

    Article  CAS  PubMed  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levey AS, de Jong PE, Coresh J et al (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80(1):17–28

  24. Yasutake J, Suzuki Y, Suzuki H et al (2015) Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant 30(8):1315–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Working Group of the International Ig ANN, the Renal Pathology S, Cattran DC et al (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76(5):534–545

  26. Coppo R, Troyanov S, Bellur S et al (2014) Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 86(4):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbour SJ, Espino-Hernandez G, Reich HN et al (2016) The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int 89(1):167–175

    Article  CAS  PubMed  Google Scholar 

  28. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.R-project.org/. Accessed 7/25/2020, 2020

  29. Kim SJ, Koo HM, Lim BJ et al (2012) Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One 7(7):e40495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakagawa H, Suzuki S, Haneda M, Gejyo F, Kikkawa R (2000) Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol 20(2):122–128

    Article  CAS  PubMed  Google Scholar 

  31. Maillard N, Wyatt RJ, Julian BA et al (2015) Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol 26(7):1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167(5):2861–2868

    Article  CAS  PubMed  Google Scholar 

  33. Endo M, Ohi H, Ohsawa I, Fujita T, Matsushita M, Fujita T (1998) Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol Dial Transplant 13(8):1984–1990

    Article  CAS  PubMed  Google Scholar 

  34. Zhu L, Zhai YL, Wang FM et al (2015) Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy. J Am Soc Nephrol 26(5):1195–1204

    Article  CAS  PubMed  Google Scholar 

  35. Oto OA, Demir E, Mirioglu S et al (2021) Clinical significance of glomerular C3 deposition in primary membranous nephropathy. J Nephrol 34(2):581–587

  36. Stangou M, Alexopoulos E, Pantzaki A, Leonstini M, Memmos D (2008) C5b-9 glomerular deposition and tubular alpha3beta1-integrin expression are implicated in the development of chronic lesions and predict renal function outcome in immunoglobulin A nephropathy. Scand J Urol Nephrol 42(4):373–380

    Article  CAS  PubMed  Google Scholar 

  37. Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E (1987) Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int 31(3):820–829

    Article  CAS  PubMed  Google Scholar 

  38. Roos A, Rastaldi MP, Calvaresi N et al (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17(6):1724–1734

    Article  CAS  PubMed  Google Scholar 

  39. Wada Y, Matsumoto K, Suzuki T et al (2018) Clinical significance of serum and mesangial galactose-deficient IgA1 in patients with IgA nephropathy. PLoS One 13(11):e0206865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Suzuki H, Yasutake J, Makita Y et al (2018) IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int 93(3):700–705

    Article  CAS  PubMed  Google Scholar 

  41. Wang M, Lv J, Zhang X, Chen P, Zhao M, Zhang H (2020) Secondary IgA Nephropathy Shares the Same Immune Features With Primary IgA Nephropathy. Kidney Int Rep 5(2):165–172

    Article  PubMed  Google Scholar 

  42. Zhao L, Peng L, Yang D et al (2020) Immunostaining of galactose-deficient IgA1 by KM55 is not specific for immunoglobulin A nephropathy. Clin Immunol 217:108483

    Article  CAS  PubMed  Google Scholar 

  43. Cassol CA, Bott C, Nadasdy GM et al (2020) Immunostaining for galactose-deficient immunoglobulin A is not specific for primary immunoglobulin A nephropathy. Nephrol Dial Transplant 35(12):2123–2129

    Article  CAS  PubMed  Google Scholar 

  44. Yamasaki K, Suzuki H, Yasutake J, Yamazaki Y, Suzuki Y (2018) Galactose-Deficient IgA1-Specific Antibody Recognizes GalNAc-Modified Unique Epitope on Hinge Region of IgA1. Monoclon Antib Immunodiagn Immunother 37(6):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olmes G, Buttner-Herold M, Ferrazzi F, Distel L, Amann K, Daniel C (2016) CD163 + M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. Arthritis Res Ther 18:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ikezumi Y, Suzuki T, Imai N et al (2006) Histological differences in new-onset IgA nephropathy between children and adults. Nephrol Dial Transplant 21(12):3466–3474

    Article  PubMed  Google Scholar 

  47. Kawasaki Y, Suyama K, Miyazaki K et al (2014) Resistance factors for the treatment of immunoglobulin A nephropathy with diffuse mesangial proliferation. Nephrology (Carlton) 19(7):384–391

    Article  CAS  Google Scholar 

  48. Hu W, Lin J, Lian X et al (2019) M2a and M2b macrophages predominate in kidney tissues and M2 subpopulations were associated with the severity of disease of IgAN patients. Clin Immunol 205:8–15

    Article  CAS  PubMed  Google Scholar 

  49. Soares MF, Genitsch V, Chakera A et al (2019) Relationship between renal CD68(+) infiltrates and the Oxford Classification of IgA nephropathy. Histopathology 74(4):629–637

    Article  PubMed  Google Scholar 

  50. Kobori T, Hamasaki S, Kitaura A et al (2018) Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Front Immunol 9:334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Huen SC, Cantley LG (2017) Macrophages in Renal Injury and Repair. Annu Rev Physiol 79:449–469

    Article  CAS  PubMed  Google Scholar 

  52. Cao Q, Harris DC, Wang Y (2015) Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda) 30(3):183–194

    CAS  Google Scholar 

  53. Liu Y, Wang K, Liang X et al (2018) Complement C3 Produced by Macrophages Promotes Renal Fibrosis via IL-17A Secretion. Front Immunol 9:2385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Takahata A, Arai S, Hiramoto E et al (2020) Crucial Role of AIM/CD5L in the Development of Glomerular Inflammation in IgA Nephropathy. J Am Soc Nephrol 31(9):2013–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Edstrom Halling S, Soderberg MP, Berg UB (2012) Predictors of outcome in paediatric IgA nephropathy with regard to clinical and histopathological variables (Oxford classification). Nephrol Dial Transplant 27(2):715–722

    Article  PubMed  CAS  Google Scholar 

  56. Herzenberg AM, Fogo AB, Reich HN et al (2011) Validation of the Oxford classification of IgA nephropathy. Kidney Int 80(3):310–317

    Article  PubMed  Google Scholar 

  57. Roberts IS (2013) Oxford classification of immunoglobulin A nephropathy: an update. Curr Opin Nephrol Hypertens 22(3):281–286

    Article  CAS  PubMed  Google Scholar 

  58. Zeng CH, Le W, Ni Z et al (2012) A multicenter application and evaluation of the oxford classification of IgA nephropathy in adult chinese patients. Am J Kidney Dis 60(5):812–820

    Article  PubMed  Google Scholar 

  59. Katafuchi R, Ninomiya T, Nagata M, Mitsuiki K, Hirakata H (2011) Validation study of oxford classification of IgA nephropathy: the significance of extracapillary proliferation. Clin J Am Soc Nephrol 6(12):2806–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El Karoui K, Hill GS, Karras A et al (2011) Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. II. Light microscopic and clinical studies. Kidney Int 79(6):643–654

    Article  PubMed  CAS  Google Scholar 

  61. Coppo R, D’Arrigo G, Tripepi G et al (2020) Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford Classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant 35(6):1002–1009

    Article  CAS  PubMed  Google Scholar 

  62. Shi SF, Wang SX, Jiang L et al (2011) Pathologic predictors of renal outcome and therapeutic efficacy in IgA nephropathy: validation of the oxford classification. Clin J Am Soc Nephrol 6(9):2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chakera A, MacEwen C, Bellur SS, Chompuk LO, Lunn D, Roberts ISD (2016) Prognostic value of endocapillary hypercellularity in IgA nephropathy patients with no immunosuppression. J Nephrol 29(3):367–375

    Article  CAS  PubMed  Google Scholar 

  64. Canney M, Barbour SJ, Zheng Y et al (2021) Quantifying Duration of Proteinuria Remission and Association with Clinical Outcome in IgA Nephropathy. J Am Soc Nephrol 32(2):436–447

    Article  CAS  PubMed  Google Scholar 

  65. Schena FP, Anelli VW, Trotta J et al (2021) Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy. Kidney Int 99(5):1179–1188

  66. Barbour SJ, Canney M, Coppo R et al (2020) Improving treatment decisions using personalized risk assessment from the International IgA Nephropathy Prediction Tool. Kidney Int 98(4):1009–1019

    Article  CAS  PubMed  Google Scholar 

  67. Bartosik LP, Lajoie G, Sugar L, Cattran DC (2001) Predicting progression in IgA nephropathy. Am J Kidney Dis 38(4):728–735

    Article  CAS  PubMed  Google Scholar 

  68. Donadio JV, Bergstralh EJ, Grande JP, Rademcher DM (2002) Proteinuria patterns and their association with subsequent end-stage renal disease in IgA nephropathy. Nephrol Dial Transplant 17(7):1197–1203

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YC, ED, SM and HY participated in study design, acquisition of data and regulatory approvals, data analysis, and writing of the paper. ABD, AT and KLL participated in study design, interpretation, and writing of the paper. YS and EK assessed all biopsy samples and participated in interpretation and writing of the paper. SUA and FSO measured serum levels of Gd-IgA1 and AOPP and also participated in interpretation and writing of the paper. ED, OAO and ASA reviewed the patient charts and participated in data interpretation and writing of the paper.

Corresponding author

Correspondence to Yasar Caliskan.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflicts of interest to disclose.

Ethics approval

The research was approved by the local ethical committee of Istanbul University.

Consent to participate

The authors declare that the patients reported here have provided authorization for use of his medical records for research.

Consent for publication

All authors gave consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliskan, Y., Demir, E., Karatay, E. et al. Oxidative stress and macrophage infiltration in IgA nephropathy. J Nephrol 35, 1101–1111 (2022). https://doi.org/10.1007/s40620-021-01196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-021-01196-7

Keywords

Navigation