Skip to main content

Advertisement

Log in

The conundrums of chronic kidney disease and aging

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD), as presently defined, is a common disorder. Aging is a nearly universal phenomenon that can affect renal anatomy and function, but at variable rates in individuals. Loss of nephrons and a decline in glomerular filtration rate (GFR) is a characteristic of normal aging, called renal senescence. Using fixed and absolute thresholds for defining CKD on the basis of GFR for all ages may lead to diagnostic uncertainty (a conundrum) in both young and older subjects. This brief review will consider the physiological and anatomical changes of the kidney occurring in the process of normal renal senescence focusing on GFR and will examine the relevance of these observation for the diagnosis of CKD using GFR as the distinguishing parameter. Once a better understanding of the pathobiology underlying renal senescence is obtained, specific interventions may become available to slow the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Glassock RJ, Warnock D, Delanaye P (2016) The Global burden of CKD. Nat Rev Nephrol (in press)

  2. Martinez DE (1998) Mortality patterns suggest lack of senescence in hydra. Exp Gerontol 33(3):217–225

    Article  CAS  PubMed  Google Scholar 

  3. Finch CE, Kirkwood TBL (2000) Chance, development and aging, 1st edn. Oxford University Press, New York

    Google Scholar 

  4. Weinstein JR, Anderson S (2010) The Aging Kidney: physiological Changes. Adv Chronic Kidney Dis 17:302–307

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schlanger L (2009) Kidney senescence. In: Geriatric nephrology curriculum. American Society of Nephrology

  6. Klenk J et al (2016) Changes in life expectancy 1950–2010: contributions from age- and disease-specific mortality in selected countries. Popul Health Metr 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tonelli M, Riella M (2014) Chronic kidney disease and the aging population. J Nephrol 27:1–5

    Article  PubMed  Google Scholar 

  8. Ebert N, Jakob O, Gaedeke J, van der Giet M, Kuhlmann MK, Martus P, Mielke N, Schuchardt M, Tölle M, Wenning V, Schaeffner ES (2016) Prevalence of reduced kidney functionand albuminuria in older adults: the Berlin Initiative Study. Nephrol Dial Transplant (Epub ahead of print)

  9. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M (2007) Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int 72:632–637

    Article  CAS  PubMed  Google Scholar 

  10. Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33:278–285

    Article  CAS  PubMed  Google Scholar 

  11. Lindeman RD, J.D. To bin, Shock NW (1984) Association between blood pressure and the rate of decline in renal function with age. Kidney Int 26:861–868

    Article  CAS  PubMed  Google Scholar 

  12. Hollenberg NK et al (1999) Age, renal perfusion and function in island-dwelling indigenous Kuna Amerinds of Panama. Nephron 82:131–138

    Article  CAS  PubMed  Google Scholar 

  13. Epstein M (1996) Aging and the kidney. J Am Soc Nephrol 7:1106–1122

    CAS  PubMed  Google Scholar 

  14. Glassock RJ, Rule AD (2015) The kidney in aging. In: Davison AM et al (eds) Oxford textbook of clinical nephrology. Oxford University Press, Oxford

  15. Cohen E, Nardi Y, Krause I et al (2014) A longitudinall assesment of the natural rate of decline of renal function with age. J Nephrol 27:635–641

    Article  PubMed  Google Scholar 

  16. Hoang K et al (2003) Determinants of glomerular hypofiltration in aging humans. Kidney Int 64:1417–1424

    Article  PubMed  Google Scholar 

  17. Tan JC et al (2010) Effects of aging on glomerular function and number in living kidney donors. Kidney Int 78:686–692

    Article  PubMed  PubMed Central  Google Scholar 

  18. Glassock RJ, Rule AD (2012) The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int 82:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  19. Denic A, Glassock RJ, Rule AD (2016) Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23:19–28

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elsherbiny HE et al (2014) Nephron hypertrophy and glomerulosclerosis and their association with kidney function and risk factors among living kidney donors. Clin J Am Soc Nephrol 9:1892–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X et al (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685

    Article  CAS  PubMed  Google Scholar 

  22. Denic A et al (2016) Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am J Kidney Dis 68:58–67

    Article  PubMed  PubMed Central  Google Scholar 

  23. Denic A et al (2016) The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol (Epub ahead of print)

  24. Rule AD et al (2010) The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med 152:561–567

    Article  PubMed  PubMed Central  Google Scholar 

  25. Denic A et al (2015) Clinical characteristics associate differently with single nephron GFR than total GFR in normal adults. J Am Soc Nephrol (Abstract, in preparation)

  26. Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    Article  CAS  PubMed  Google Scholar 

  27. Olson JL et al (1982) Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int 22:112–126

    Article  CAS  PubMed  Google Scholar 

  28. Hostetter TH et al (2001) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. J Am Soc Nephrol 12:1315–1325

    CAS  PubMed  Google Scholar 

  29. Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol Renal Physiol 249:F324–F337

    CAS  Google Scholar 

  30. Risdon RA, Sloper JC, de Wardener HE (1968) Relationship between renal function and histological changes found in renal biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–366

    Article  CAS  PubMed  Google Scholar 

  31. Thomas SE, Anderson S, Gordon KL, Oyama TT, Shankland SJ, Johnson RJ (1998) Tubulointerstitial disase in aging: evidence for underlying peritubular capillary damage, a potential role for glomerular ischemia. J Am Soc Nephrol 9:231–242

    CAS  PubMed  Google Scholar 

  32. Schreuder MF (2012) Safety in glomerular numbers. Pediatr Nephrol 27:1881–1887

    Article  PubMed  PubMed Central  Google Scholar 

  33. Luyckx VA, Brenner BM (2015) Birth weight, malnutrition and kidney-associated outcomes—a global concern. Nat Rev Nephrol 11:135–139r

    Article  PubMed  Google Scholar 

  34. Kidney Disease Outcome Quality Initiative (K/DOQI) (2002) Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(Suppl 2):S1–S246

    Google Scholar 

  35. Glassock R, Delanaye P, El Nahas M (2015) An age-calibrated classification of chronic kidney disease. JAMA 314:559–560

    Article  CAS  PubMed  Google Scholar 

  36. Levey AS, Inker LA, Coresh J (2015) Chronic kidney disease in older people. JAMA 314:557–558

    Article  CAS  PubMed  Google Scholar 

  37. Rosansky SJ (2016) Managing chronic kidney disease in older people. JAMA 315:306–307

    Article  PubMed  Google Scholar 

  38. Coresh J et al (2014) Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311:2518–2531

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chronic Kidney Disease Prognosis Consortium et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  Google Scholar 

  40. Astor BC et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79:1331–1340

    Article  CAS  PubMed  Google Scholar 

  41. Gansevoort RT et al (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Velde M et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79:1341–1352

    Article  PubMed  Google Scholar 

  43. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448

    Article  PubMed  Google Scholar 

  44. Hallan SI et al (2012) Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308:2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gansevoort RT et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382:339–352

    Article  PubMed  Google Scholar 

  46. O’Hare AM et al (2014) Interpreting treatment effects from clinical trials in the context of real-world risk information: end-stage renal disease prevention in older adults. JAMA Intern Med 174:391–397

    Article  PubMed  PubMed Central  Google Scholar 

  47. Delanaye P et al (2016) An age-calibrated definition of chronic kidney disease: rationale and benefits. Clin Biochem Rev 37:17–26

    PubMed  PubMed Central  Google Scholar 

  48. Pottel H, Hoste L, Delanaye P (2015) Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73 m2. Pediatr Nephrol 30:821–828

    Article  PubMed  Google Scholar 

  49. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    CAS  PubMed  Google Scholar 

  50. Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  51. Delanaye P, Mariat C (2013) The applicability of eGFR equations to different populations. Nat Rev Nephrol 9:513–522

    Article  CAS  PubMed  Google Scholar 

  52. Rule AD, Glassock RJ (2013) GFR estimating equations: getting closer to the truth? Clin J Am Soc Nephrol 8:1414–1420

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schaeffner ES et al (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157:471–481

    Article  PubMed  Google Scholar 

  54. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Mariat C, Martens F, Delanaye P (2016) An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 31:798–806

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gharbi MB, Elseviers M, Zamd M, Alaoui AB, Benahadi N, Trabelssi EH, Bayahai R, Ramdani B, De Broe ME (2016) Chronic kidney disease, hypertension, diabetes and obesity in the adult population of Morocco: how to avoid “over"- and “under"- diagnosis of CKD. Kidney Int 89:1363–1371

    Article  Google Scholar 

  56. Singh, AK, Raed A, Kari J (2015) Endocrine complications of chronic kidney disease. In: Kimmel PL, Rosenberg ME (eds) Chronic renal disease. Academic Press, San Diego, pp 310–319

  57. Malmgren L, McGuigan FE, Berglundh S, Westman K, Christensson A, Åkesson K (2015) Declining estimated glomerular filtration rate and its association with mortality and comorbidity over 10 years in elderly women. Nephron 130:245–255

    Article  PubMed  Google Scholar 

  58. Delanaye P, Glassock RJ (2015) Glomerular filtration rate and aging: another longitudinal study—A long time coming! Nephron 131:1–4

    Article  PubMed  Google Scholar 

  59. Dalrymple LS et al (2011) Chronic kidney disease and the risk of end-stage renal disease versus death. J Gen Intern Med 26:379–385

    Article  PubMed  Google Scholar 

  60. Sud M et al (2014) Risk of end-stage renal disease and death after cardiovascular events in chronic kidney disease. Circulation 130:458–465

    Article  PubMed  Google Scholar 

  61. Kasiske BL, Kumar R, Kimmel PL, Pesavento TE, Kalil RS, Kraus ES, Rabb H, Posselt AM, Anderson-Haag TL, Steffes MW, Israni AK, Snyder JJ, Singh RJ, Weir MR (2016) Abnormalities in biomarkers of mineral and bone metabolism in kidney donors. Kidney Int (Epub ahead of print)

  62. Gansevoort RT, de Jong PE (2010) Challenges for the present CKD classification system. Curr Opin Nephrol Hypertens 19:308–314

    Article  PubMed  Google Scholar 

  63. Hudson JQ, Bean JR, Burger CF, Stephens AK, McFarland MS (2015) Estimated glomerular filtration rate leads to higher drug dose recommendations in the elderly compared with creatinine clearance. Int J Clin Pract 69:313–320

    Article  CAS  PubMed  Google Scholar 

  64. Ocampo A, Reddy P, Izpisua Belmonte JC (2016) Anti-aging strategies based on cellular reprogramming. Trends Mol Med 22:725–738

    Article  PubMed  Google Scholar 

  65. Snell TW et al (2016) Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology 17:907–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glassock RJ, Rule AD (2016) The kidney in aging: biology, anatomy, physiology and clinical relevance. In: Turner N et al (eds) Oxford textbook of clinical nephrology. Oxford University Press, Oxford

  67. Boubred F et al (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol 293:F1944–F1949

    Article  CAS  PubMed  Google Scholar 

  68. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    CAS  PubMed  Google Scholar 

  69. Wlodek ME et al (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18:1688–1696

    Article  CAS  PubMed  Google Scholar 

  70. Chin MP et al (2014) Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail 20:953–958

    Article  CAS  PubMed  Google Scholar 

  71. Marckmann P et al (2015) High-protein diets and renal health. J Ren Nutr 25:1–5

    Article  CAS  PubMed  Google Scholar 

  72. Boubred F et al (2016) High protein intake in neonatal period induces glomerular hypertrophy and sclerosis in adulthood in rats born with IUGR. Pediatr Res 79:22–26

    Article  CAS  PubMed  Google Scholar 

  73. Eriksen BO et al (2016) Elevated blood pressure is not associated with accelerated glomerular filtration rate decline in the general non-diabetic middle-aged population. Kidney Int 90:404–410

    Article  PubMed  Google Scholar 

  74. Parsa A et al (2013) APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369:2183–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freedman BI (2013) APOL1 and nephropathy progression in populations of African ancestry. Semin Nephrol 33:425–432

    Article  CAS  PubMed  Google Scholar 

  76. Larsen CP et al (2015) Histopathologic findings associated with APOL1 risk variants in chronic kidney disease. Mod Pathol 28:95–102

    Article  PubMed  Google Scholar 

  77. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382:273–283

    Article  PubMed  Google Scholar 

  78. Luyckx VA, Shukha K, Brenner BM (2011) Low nephron number and its clinical consequences. Rambam Maimonides Med J 31:e0061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Glassock.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional or national research committees and with the 1994 Helsinki declarations and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glassock, R.J., Denic, A. & Rule, A.D. The conundrums of chronic kidney disease and aging. J Nephrol 30, 477–483 (2017). https://doi.org/10.1007/s40620-016-0362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-016-0362-x

Keywords

Navigation