Skip to main content

Advertisement

Log in

Postconditioning attenuates renal ischemia–reperfusion injury by mobilization of stem cells

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

We recently showed that reactive oxygen species (ROS) and mitochondrial DNA damage and deletions were attenuated by postconditioning (POC). It is not known, however, whether a population of progenitor cells is recruited by POC and is responsible for repair of renal tubular epithelial cells after ischemic injury.

Methods

The model of renal POC was induced by 45 min clamping of the left renal artery and right nephrectomy followed by 7 min of short-time full reperfusion and 3 cycles of 30 s ischemia and 30 s reperfusion. The lymphocyte compartment of peripheral blood was evaluated by fluorescence-activated cell sorting (FACS) to determine expression of the bone marrow-derived progenitor cell markers CXC-chemokine receptor 4 (CXCR4), c-Kit, and CD34, at 12 h, 1 day and 3 days post-ischemia. Serum and kidney tissue were collected for analysis at 3 and 7 days post-ischemia.

Results

Renal functional and structural recovery was markedly improved by POC, which increased the number of CXCR4+ and CD34+ stem cells in peripheral blood and kidney tissue. Inhibition of ROS burst by POC was likely associated with increased hypoxia-inducible factor-1 expression, which may further promote stromal cell-derived factor 1 (SDF-1) expression.

Conclusions

The mechanisms of stem cell recruitment to the injured foci mobilized by POC appear to be mediated by moderate oxidative stress, which may lead to increased SDF-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  CAS  PubMed  Google Scholar 

  2. Gill N, Nally JV Jr, Fatica RA (2005) Renal failure secondary to acute tubular necrosis: epidemiology, diagnosis, and management. Chest 128:2847–2863

    Article  PubMed  Google Scholar 

  3. Maitra G, Ahmed A, Rudra A, Wankhede R, Sengupta S, Das T (2009) Renal dysfunction after off-pump coronary artery bypass surgery- risk factors and preventive strategies. Indian J Anaesth 53:401–407

    PubMed Central  PubMed  Google Scholar 

  4. Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, Himmelfarb J, Collins AJ (2006) Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol 17:1135–1142

    Article  PubMed  Google Scholar 

  5. Ali T, Khan I, Simpson W, Prescott G, Townsend J, Smith W, Macleod A (2007) Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 18:1292–1298

    Article  CAS  PubMed  Google Scholar 

  6. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520

    Article  CAS  PubMed  Google Scholar 

  7. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  8. Metcalf D (2001) Hematopoietic stem cells: old and new. Biomed Pharmacother 55:75–78

    Article  CAS  PubMed  Google Scholar 

  9. McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nat Med 11:1026–1028

    Article  CAS  PubMed  Google Scholar 

  10. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  11. Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, Chung SY, Chua S, Kao YH, Yen CH, Shao PL, Chang KC, Leu S, Yip HK (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 9:51–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administerd mesenchymal stem cells protected against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol 289(1):F31–F42

    Google Scholar 

  13. Li B, Cohen A, Hudson TE, Motlagh D, Amrani DL, Duffield JS (2010) Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury. Circulation 121:2211–2220

    Article  PubMed Central  PubMed  Google Scholar 

  14. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow–derived stem cells. J Clin Invest 115:1743–1755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    Article  CAS  PubMed  Google Scholar 

  16. Sun Z, Zhang X, Locke JE, Zheng Q, Tachibana S, Diehl AM, Williams GM (2009) Recruitment of host progenitor cells in rat liver transplants. Hepatology 49:587–597

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Yu Q, Lin J, Lai X, Cao W, Du K, Wang Y, Wu K, Hu Y, Zhang L, Xiao H, Duan Y, Huang H (2011) Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev 20(11):1961–1971

    Article  CAS  PubMed  Google Scholar 

  18. Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15(2):57–63

    Article  CAS  PubMed  Google Scholar 

  19. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  20. Togel FE, Westenfelder C (2011) Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int 1(3):87–89

    Article  CAS  Google Scholar 

  21. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784

    Article  PubMed  Google Scholar 

  22. Tajima Fumihito, Sato Takashi, Laver Joseph H, Ogawa Makio (2000) CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony stimulating factor. Blood 96:1989–1993

    CAS  PubMed  Google Scholar 

  23. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol 287:C572–C579

    Article  CAS  Google Scholar 

  24. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pouysségur J, Mechta-Grigoriou F (2006) Redox regulation of the hypoxia inducible factor. Biol Chem 387:1337–1346

    Article  PubMed  Google Scholar 

  26. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF1-alpha requires mitochondrial reactive oxygen species. Am J Physiol 283:L922–L931

    CAS  Google Scholar 

  27. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2 and S3 segments. Kidney Int 14:31–49

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Tang T, Zhang P, Bu H (2010) Postconditioning attenuates renal ischemia-reperfusion injury by preventing DAF down-regulation. J Urol 183:2424–2431

    Article  PubMed  Google Scholar 

  29. Tan Xiaohua, Zhang Lei, Jiang Yunpeng, Yang Yujia, Zhang Wenqi, Li Yulin, Zhang Xiuying (2013) Postconditioning attenuates mitochondrial oxidative stress in rat kidney exposed to ischemia-reperfusion injury. Nephrol Dial Transpl 28(11):2754–2765

    Article  CAS  Google Scholar 

  30. Alfarano C, Roubeix C, Chaaya R, Ceccaldi C, Calise D, Mias C, Cussac D, Bascands JL, Parini A (2012) Intraparenchymal injection of bone marrow mesenchymal stem cells reduces kidney fibrosis after ischemia-reperfusion in cyclosporine-immunosuppressed rats. Cell Transplant 21(9):2009–2019

    Article  CAS  PubMed  Google Scholar 

  31. Cai J, Yu X, Xu R, Fang Y, Qian X, Liu S, Teng J, Ding X (2014) Maximum efficacy of mesenchymal stem cells in rat model of renal ischemia-reperfusion injury: renal artery administration with optimal numbers. PLoS ONE 9(3):e92347

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Feng G, Mao D, Che Y, Su W, Wang Y, Xu Y, Fan Y, Zhao H, Kong D, Xu Y, Li Z (2013) The phenotypic fate of bone marrow-derived stem cells in acute kidney injury. Cell Physiol Biochem 32(5):1517–1527

    Article  CAS  PubMed  Google Scholar 

  34. Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokin receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11:152–176

    CAS  PubMed  Google Scholar 

  35. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    Article  CAS  PubMed  Google Scholar 

  36. Cooper CR, Chay CH, Gendernalik JD, Lee HL, Bhatia J, Taichman RS, McCauley LK, Keller ET, Pienta KJ (2003) Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97:739–747

    Article  PubMed  Google Scholar 

  37. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ (2002) CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100:2597–2606

    Article  CAS  PubMed  Google Scholar 

  38. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol 3:687–694

    Article  CAS  PubMed  Google Scholar 

  39. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  40. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

  41. Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bernhardt WM, Câmpean V, Kany S, Jürgensen JS, Weidemann A, Warnecke C, Arend M, Klaus S, Günzler V, Amann K, Willam C, Wiesener MS, Eckardt KU (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 17:1970–1978

    Article  CAS  PubMed  Google Scholar 

  43. Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D, Ellisen LW (2010) Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 107:4675–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K (2009) Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem 284:33185–33194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNF-alpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–542

    Article  CAS  PubMed  Google Scholar 

  46. Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54

    Article  CAS  PubMed  Google Scholar 

  47. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in non-hypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pagé EL, Robitaille GA, Pouysségur J, Richard DE (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277:48403–48409

    Article  PubMed  Google Scholar 

  49. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    Article  CAS  PubMed  Google Scholar 

  50. Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, Lee HC (2013) Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta 1830(10):4743–4751

    Article  CAS  PubMed  Google Scholar 

  51. Marfella R, D’Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, Berrino L, Rossi F, Giugliano D (2002) Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia 45:1172–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China Award number 81470864 and Program of New Century Excellent Talents of Ministry of Education in China, Award number NCET-10-0448.

Conflict of interest

All the authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuying Zhang.

Additional information

X. Tan and R. Yin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Yin, R., Chen, Y. et al. Postconditioning attenuates renal ischemia–reperfusion injury by mobilization of stem cells. J Nephrol 28, 289–298 (2015). https://doi.org/10.1007/s40620-015-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-015-0171-7

Keywords

Navigation