Skip to main content

Advertisement

Log in

Wild-type uromodulin prevents NFkB activation in kidney cells, while mutant uromodulin, causing FJHU nephropathy, does not

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Uromodulin (Tamm-Horsfall protein) is the most abundant urinary protein in healthy individuals. Despite 60 years of research, its physiological role remains rather elusive. Familial juvenile hyperuricemic nephropathy and medullary cystic kidney disease Type 2 are autosomal dominant tubulointerstitial nephropathies characterized by gouty arthritis and progressive renal insufficiency, caused by uromodulin (UMOD) mutations. The aim of this study was to compare the cellular effects of mutant and wild-type UMOD.

Methods

Wild-type UMOD cDNA was cloned from human kidney cDNA into pcDNA3 expression vector. A mutant UMOD construct, containing the previously reported mutation, V273, was created by in vitro mutagenesis. Transient and stable transfection studies were performed in human embryonic kidney cells and mouse distal convoluted tubular cells, respectively. Expression was evaluated by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunofluorescence. Oligosaccharide cleavage by glycosidases was performed to characterize different forms of UMOD. Nuclear translocation of P65 and degradation of IκBα and IRAK1 in response to interleukin (IL)-1β were used to evaluate the effects of wild-type and mutant UMOD on the IL-1R-NFκB pathway.

Results

The mutant protein was shown to be retained in the endoplasmic reticulum and was not excreted to the cell medium, as opposed to the wild-type protein. NFκB activation in cells expressing mutant UMOD was similar to that of untransfected cells. In contrast, cells over-expressing wild-type UMOD showed markedly reduced NFκB activation.

Conclusion

Our findings suggest that UMOD may have a physiologic function related to its inhibitory effect on the NFκB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fletcher AP, Neuberger A, Ratcliffe WA (1970) Tamm-Horsfall urinary glycoprotein. The subunit structure. Biochem J 120(2):425–432

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Zager RA, Cotran RS, Hoyer JR (1978) Pathologic localization of Tamm-Horsfall protein in interstitial deposits in renal disease. Lab invest 38(1):52–57

    CAS  PubMed  Google Scholar 

  3. Malagolini N, Cavallone D, Serafini-Cessi F (1997) Intracellular transport, cell-surface exposure and release of recombinant Tamm-Horsfall glycoprotein. Kidney Int 52(5):1340–1350

    Article  CAS  PubMed  Google Scholar 

  4. Vyletal P, Bleyer AJ, Kmoch S (2010) Uromodulin biology and pathophysiology–an update. Kidney Blood Press Res 33(6):456–475

    Article  CAS  PubMed  Google Scholar 

  5. El-Achkar TM, Wu XR (2012) Uromodulin in kidney injury: an instigator, bystander, or protector? Am J Kidney Dis 59(3):452–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dahan K, Fuchshuber A, Adamis S et al (2001) Familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease type 2: two facets of the same disease? J Am Soc Nephrol 12(11):2348–2357

    CAS  PubMed  Google Scholar 

  7. Hart TC, Gorry MC, Hart PS et al (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39(12):882–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ronco P, Brunisholz M, Geniteau-Legendre M, Chatelet F, Verroust P, Richet G (1987) Physiopathologic aspects of Tamm-Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle’s loop. Adv Nephrol Necker Hosp 16:231–249

    CAS  PubMed  Google Scholar 

  9. Rampoldi L, Caridi G, Santon D et al (2003) Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 12(24):3369–3384

    Article  CAS  PubMed  Google Scholar 

  10. Dahan K, Devuyst O, Smaers M et al (2003) A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol 14(11):2883–2893

    Article  CAS  PubMed  Google Scholar 

  11. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17(19):5708–5717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rutishauser J, Spiess M (2002) Endoplasmic reticulum storage diseases. Swiss Med Wkly 132(17–18):211–222

    CAS  PubMed  Google Scholar 

  13. Dinour D, Ron R, Holtzman EJ (2006) The novel pathogenic V273F uromodulin mutation causes intracellular retention of a 75 KD Tamm-Horsfall glycoprotein precursor. NDT 21(suppl 4):iv350

    Google Scholar 

  14. Vylet’al P, Kublova M, Kalbacova M et al (2006) Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int 70(6):1155–1169

    Article  PubMed  Google Scholar 

  15. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79(3):683–701

    CAS  PubMed  Google Scholar 

  16. Williams SE, Reed AA, Galvanovskis J et al (2009) Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 18(16):2963–2974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bates JM, Raffi HM, Prasadan K et al (2004) Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65(3):791–797

    Article  CAS  PubMed  Google Scholar 

  18. Moynagh PN (2005) The NF-kappaB pathway. J Cell Sci 118(Pt 20):4589–4592

    Article  CAS  PubMed  Google Scholar 

  19. Dulawa J, Jann K, Thomsen M, Rambausek M, Ritz E (1988) Tamm Horsfall glycoprotein interferes with bacterial adherence to human kidney cells. Eur J Clin Invest 18(1):87–91

    Article  CAS  PubMed  Google Scholar 

  20. Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42(4):658–676

    Article  CAS  PubMed  Google Scholar 

  21. Chen WC, Lin HS, Chen HY, Shih CH, Li CW (2001) Effects of Tamm-Horsfall protein and albumin on calcium oxalate crystallization and importance of sialic acids. Mol Urol 5(1):1–5

    Article  PubMed  Google Scholar 

  22. Chen WC, Lin HS, Tsai FJ, Li CW (2001) Effects of Tamm-Horsfall protein and albumin on the inhibition of free radicals. Urol Int 67(4):305–309

    Article  CAS  PubMed  Google Scholar 

  23. Sherblom AP, Decker JM, Muchmore AV (1988) The lectin-like interaction between recombinant tumor necrosis factor and uromodulin. J Biol Chem 263(11):5418–5424

    CAS  PubMed  Google Scholar 

  24. Sanchez-Nino MD, Sanz AB, Ortiz A (2012) Uromodulin, inflammasomes, and pyroptosis. J Am Soc Nephrol 23(11):1761–1763

    Article  PubMed  Google Scholar 

  25. Garlanda C, Riva F, Bonavita E, Gentile S, Mantovani A (2013) Decoys and regulatory “Receptors” of the IL-1/Toll-Like receptor superfamily. Front Immunol 4:180

    PubMed Central  PubMed  Google Scholar 

  26. Saemann MD, Weichhart T, Zeyda M et al (2005) Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 115(2):468–475

    Article  PubMed Central  PubMed  Google Scholar 

  27. El-Achkar TM, Wu XR, Rauchman M, McCracken R, Kiefer S, Dagher PC (2008) Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am J Physiol Renal Physiol 295(2):F534–F544

    Article  CAS  PubMed  Google Scholar 

  28. Kottgen A, Glazer NL, Dehghan A et al (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41(6):712–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kottgen A, Hwang SJ, Larson MG et al (2010) Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J Am Soc Nephrol 21(2):337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dganit Dinour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinour, D., Ganon, L., Nomy, LI. et al. Wild-type uromodulin prevents NFkB activation in kidney cells, while mutant uromodulin, causing FJHU nephropathy, does not. J Nephrol 27, 257–264 (2014). https://doi.org/10.1007/s40620-014-0079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0079-7

Keywords

Navigation