Skip to main content
Log in

Denosumab e cambio di paradigma nella terapia dell’osteoporosi

  • UNO SGUARDO ALLA STORIA
  • Published:
L'Endocrinologo Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Bibliografia

  1. Albright F, Bloomberg E, Smith PH (1940) Post-menopausal osteoporosis. Trans Assoc Am Physicians 55:298–305

    CAS  Google Scholar 

  2. Reifenstein EC, Albright F (1947) The metabolic effects of steroids in osteoporosis. J Clin Invest 26:24–56

    Article  CAS  Google Scholar 

  3. Love RR, Mazess RB, Barden HS et al. (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 326:852–856

    Article  CAS  Google Scholar 

  4. Harper MJ, Walpole AL (1966) Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 212:87

    Article  CAS  Google Scholar 

  5. Jaffe H, Bodansky A, Blair J (1932) The effects of parathormone and ammonium chloride on the bones of rabbits. J Exp Med 55:695–701

    Article  CAS  Google Scholar 

  6. Selye H (1932) On the stimulation of new bone formation with parathyroid extract and irradiated ergosterol. Endocrinology 16:547–558

    Article  CAS  Google Scholar 

  7. Albright P, Aub JC, Bauer W (1934) Hyperparathyroidism: a common and polymorphic condition as illustrated by seventeen proved cases from one clinic. JAMA 102:1276–1287

    Article  Google Scholar 

  8. Reeve J, Tregear GW, Parsons JA (1976) Preliminary trial of low doses of human parathyroid hormone 1-34 peptide in treatment of osteoporosis. Calcif Tissue Res 21(Suppl):469–477

    PubMed  Google Scholar 

  9. Milhaud G, Bloch-Michel H, Coutris G et al. (1969) Effect de la thyreocalcitonine de porc sur l’osteoporose humaine. C R Acad Sci (D) 268(part 3):3100–3102

    CAS  Google Scholar 

  10. Fleisch H, Bisaz S (1962) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203:671–675

    Article  CAS  Google Scholar 

  11. Fleisch H, Russell RGG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    Article  CAS  Google Scholar 

  12. Fleisch H, Maerki J, Russell RG (1966) Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc Soc Exp Biol Med 122:317–320

    Article  CAS  Google Scholar 

  13. Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep ML et al. (1986) Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1:27–39

    CAS  PubMed  Google Scholar 

  14. Simonet WS, Lacey DL, Dunstan CR et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  Google Scholar 

  15. Lacey DL, Timms E, Tan HL et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  Google Scholar 

  16. Atkinson JE, Cranmer P, Mohr S et al. (2003) Bone mineral density is increased following monthly administration of AMG 162 in cynomologus monkeys. J Bone Miner Res 18:S92

    Google Scholar 

  17. Bekker PJ, Holloway DL, Rasmussen AS et al. (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19:1059–1066

    Article  CAS  Google Scholar 

  18. Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor reponses in adaptative behavior. Brains Res Rev 3:1–34

    Article  CAS  Google Scholar 

  19. Toni R, Di Conza G, Barbaro F et al. (2020) Microtopography of immune cells in osteoporosis and bone lesions by endocrine disruptors. Front Immunol 11:1737

    Article  CAS  Google Scholar 

  20. Huxley-Jones J, Foord SM, Barnes MR (2008) Drug discovery in the extracellular matrix. Drug Discov Today 13:685–694

    Article  CAS  Google Scholar 

Download references

Ringraziamenti

Questo studio è stato sviluppato nell’ambito delle convenzioni 2018–2023 tra DIMEC UNIPR e Centro Medico Galliera, San Venanzio (BO), ratifiche 27/06/2018 e 08/10/2020, Progetto Qualità diagnostico-terapeutica ambulatoriale e linee guida nazionali ed internazionali per le malattie endocrino-metaboliche. Parte di questi dati contribuiscono al materiale didattico on-line per l’insegnamento di Medicina Rigenerativa in Endocrinologia, Corso di Laurea Magistrale in Biotecnologie Mediche, Veterinarie e Farmaceutiche dell’Università di Parma, accessibile al portale dell’insegnamento sulla piattaforma Elly – UNIPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Toni.

Additional information

Nota della casa editrice

Springer Nature rimane neutrale in riguardo alle rivendicazioni giurisdizionali nelle mappe pubblicate e nelle affiliazioni istituzionali.

Presentato il 18 gennaio 2020 nell’ambito dell’evento nazionale ECM “Osteoporosi: novità e prospettive”, tenutosi con i Patrocini SIE e IRCCS Istituto Ortopedico Rizzoli, Bologna presso l’Unità OSTEONET (Osteoporosi, Nutrizione, Endocrinologia e Terapie Innovative), del CMG - DIMEC UNIPR, San Venanzio di Galliera (BO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toni, R., Borghi, D., Quarantini, E. et al. Denosumab e cambio di paradigma nella terapia dell’osteoporosi. L'Endocrinologo 22, 253–257 (2021). https://doi.org/10.1007/s40619-021-00869-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40619-021-00869-6

Navigation