Skip to main content
Log in

Biological insight into the extracellular vesicles in women with and without gestational diabetes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy, with increasing prevalence worldwide and still unclear pathogenic mechanisms. Extracellular vesicles (EVs) are emerging as potential biomarkers of disease-specific pathways in metabolic disorders, but their potential role in GDM is not fully understood. Therefore, the main aim of this study was to evaluate the link between EVs and hyperglycaemia during pregnancy.

Methods

We assessed 50 GDM women and 50 controls at the third trimester of pregnancy in whom we collected demographic characteristics and clinical and anthropometric parameters. In addition, the circulating total EVs (tEVs) and their subpopulations were assessed using flow cytometry.

Results

The levels of tEVs and EVs subtypes, expressed as median and interquartile range, were not significantly different between two groups; however, adipocyte-derived EVs (aEVs) concentration, expressed as percentage, was higher in controls than in GDM women (p = 0.045). In addition, a significant correlation was observed between aEVs (%) and third trimester total cholesterol (p = 0.022) within the GDM group. Furthermore, a significant correlation between endothelial-derived EVs (eEVs) and platelet-derived EVs (pEVs) within both groups was found, as well as a significant relation between aEVs and pEVs.

Conclusions

These data, although preliminary, represent the starting point for further studies to determine the role of circulating EVs in GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GDM:

Gestational diabetes mellitus

EVs:

Extracellular vesicles

T2DM:

Type 2 diabetes mellitus

CVD:

Cardiovascular diseases

MetS:

Metabolic syndrome

eEVs:

Extracellular vesicles derived from endothelium

tEVs:

Total extracellular vesicles

TC:

Total cholesterol

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

TG:

Triglycerides

lEVs:

Extracellular vesicles derived from leukocytes

pEVs:

Extracellular vesicles derived from platelets

aEVs:

Extracellular vesicles derived from adipocytes

PdEs:

Placenta-derived exosomes

References

  1. American Diabetes Association (ADA) (2019) Standards of medical care in diabetes—2019. Diabetes Care 42(Suppl 1):S165–S172

    Article  Google Scholar 

  2. Hod M, Kapur A, Sacks A et al (2015) The international Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: a pragmatic guide for diagnosis, management, and care. Int J Gynecol Obstet 131(Suppl 3):S173–S211

    Article  Google Scholar 

  3. Burlina S, Dalfra MG, Lapolla A (2018) Clinical and biochemical approach to predicting post-pregnancy metabolic decompensation. Diabetes Res Clin Pract 145:178–183

    Article  CAS  PubMed  Google Scholar 

  4. Franzago M, Fraticelli F, Stuppia L, Vitacolonna E (2019) Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 14(3):215–235. https://doi.org/10.1080/15592294.2019.1582277

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hedderson MM, Gunderson EP, Ferrara A (2010) Gestational weight gain and risk of gestational diabetes mellitus. Obstet Gynecol 115(3):597–604

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ding M, Chavarro J, Olsen S, Lin Y, Ley SH, Bao W, Rawal S, Grunnet LG, Thuesen ACB, Mills JL, Yeung E, Hinkle SN, Zhang W, Vaag A, Liu A, Hu FB, Zhang C (2018) Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetologia 61(8):1758–1768. https://doi.org/10.1007/s00125-018-4637-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franzago M, Fraticelli F, Nicolucci A, Celentano C, Liberati M, Stuppia L, Vitacolonna E (2017) Molecular analysis of a genetic variants panel related to nutrients and metabolism: association with susceptibility to gestational diabetes and cardiometabolic risk in affected women. J Diabetes Res 2017:4612623. https://doi.org/10.1155/2017/4612623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franzago M, Fraticelli F, Marchetti D, Celentano C, Liberati M, Stuppia L, Vitacolonna E (2018) Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Res Clin Pract 137:64–71. https://doi.org/10.1016/j.diabres.2018.01.001(Epub 2018 Jan 8)

    Article  PubMed  Google Scholar 

  9. Franzago M, Fraticelli F, Di Nicola M, Bianco F, Marchetti D, Celentano C, Liberati M, De Caterina R, Stuppia L, Vitacolonna E (2018) Early subclinical atherosclerosis in gestational diabetes: the predictive role of routine biomarkers and nutrigenetic variants. J Diabetes Res 2018:9242579. https://doi.org/10.1155/2018/9242579

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martínez MC, Andriantsitohaina R (2017) Extracellular vesicles in metabolic syndrome. Circ Res 120(10):1674–1686. https://doi.org/10.1161/CIRCRESAHA.117.309419.Review

    Article  PubMed  Google Scholar 

  11. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379(22):2180–2181

    PubMed  Google Scholar 

  12. Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van derGraaf Y, Pasterkamp G, Visseren FL, on behalf of the SMART Study Group (2014) Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 13:37. https://doi.org/10.1186/1475-2840-13-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexandru N, Badila E, Weiss E, Cochior D, Stępień E, Georgescu A (2016) Vascular complications in diabetes: microparticles and microparticle associated microRNAs as active players. Biochem Biophys Res Commun 472:1–10. https://doi.org/10.1016/j.bbrc.2016.02.038

    Article  CAS  PubMed  Google Scholar 

  14. Freeman DW, Noren Hooten N, Eitan E, Green J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, Egan J, Becker KG, Mattson MP, Ejiogu N, Evans MK (2018) Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67:2377–2388. https://doi.org/10.2337/db17-1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Margolis L, Sadovsky Y (2019) The biology of extracellular vesicles: the known unknowns. PLoS Biol 17(7):e3000363. https://doi.org/10.1371/journal.pbio.3000363(eCollection 2019 Jul)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. https://doi.org/10.1016/j.devcel.2011.08.019(Epub 2011 Sep 29)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andreu Z, Yáñez-Mó M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442. https://doi.org/10.3389/fimmu.2014.00442(eCollection 2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127

    Article  CAS  PubMed  Google Scholar 

  19. Buschow SI, Nolte-'t Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, Ossendorp F, Melief CJ, Raposo G, Wubbolts R, Wauben MH, Stoorvogel W (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10(10):1528–1542. https://doi.org/10.1111/j.1600-0854.2009.00963.x(Epub 2009 Jul 14)

    Article  CAS  PubMed  Google Scholar 

  20. Pieragostino D, Cicalini I, Lanuti P, Ercolino E, di Ioia M, Zucchelli M, Zappacosta R, Miscia S, Marchisio M, Sacchetta P, Onofrj M, Del Boccio P (2018) Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of multiple sclerosis patients. Sci Rep 8(1):3071. https://doi.org/10.1038/s41598-018-21497-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70(4):1668–1678. https://doi.org/10.1158/0008-5472.CAN-09-2470(Epub 2010 Feb 2)

    Article  CAS  PubMed  Google Scholar 

  22. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M (2014) Sorting it out: regulation of exosome loading. Semin Cancer Biol 28:3–13. https://doi.org/10.1016/j.semcancer.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutiérrez-López MD, Gilsanz A, Yáñez-Mó M, Ovalle S, Lafuente EM, Domínguez C, Monk PN, González-Alvaro I, Sánchez-Madrid F, Cabañas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68(19):3275–3292. https://doi.org/10.1007/s00018-011-0639-0(Epub 2011 Mar 2)

    Article  CAS  PubMed  Google Scholar 

  24. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556. https://doi.org/10.1016/j.cell.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  25. Mazurov D, Barbashova L, Filatov A (2013) Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. FEBS J 280(5):1200–1213. https://doi.org/10.1111/febs.12110

    Article  CAS  PubMed  Google Scholar 

  26. Pillaiyar T, Manickam M, Jung SH (2017) Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 40:99–115. https://doi.org/10.1016/j.cellsig.2017.09.004(Epub 2017 Sep 12)

    Article  CAS  PubMed  Google Scholar 

  27. Brocco D, Lanuti P, Simeone P, Bologna G, Pieragostino D, Cufaro MC, Graziano V, Peri M, Di Marino P, De Tursi M, Grassadonia A, Rapposelli IG, Pierdomenico L, Ercolino E et al (2019) Circulating cancer stem cell-derived extracellular vesicles as a novel biomarker for clinical outcome evaluation. J Oncol 2019:5879616. https://doi.org/10.1155/2019/5879616(eCollection 2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossi C, Cicalini I, Cufaro MC, Agnifili L, Mastropasqua L, Lanuti P, Marchisio M, De Laurenzi V (2019) Multi-omics approach for studying tears in treatment-naïve glaucoma patients. Int J Mol Sci. https://doi.org/10.3390/ijms20164029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T, Minciacchi VR, Minopoli M, Gigantino V, De Cecio R, Rippa M, Petti L, Capone F, Vitagliano C, Milone MR, Pucci B, Lombardi R, Iannelli F, Di Gennaro E, Bruzzese F, Marchisio M et al (2019) Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J Exp Clin Cancer Res 38(1):317. https://doi.org/10.1186/s13046-019-1317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Zhao C, Wei Y, Yang S, Cui C, Yang J, Zhang J, Qiao R (2018) Increased circulating microparticles in women with preeclampsia. Int J Lab Hematol 40(3):352–358. https://doi.org/10.1111/ijlh.12796

    Article  CAS  PubMed  Google Scholar 

  31. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim DK, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13):11327–11341

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M, Conley A et al (2018) Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles 7(1):1505403. https://doi.org/10.1080/20013078.2018.1505403(eCollection 2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cufaro MC, Pieragostino D, Lanuti P, Rossi C, Cicalini I, Federici L et al (2019) Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics. J Oncol 2019:1639854. https://doi.org/10.1155/2019/1639854(eCollection 2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bologna G, Lanuti P, D'Ambrosio P, Tonucci L, Pierdomenico L et al (2014) Water-soluble platinum phthalocyanines as potential antitumor agents. Biometals 27(3):575–589. https://doi.org/10.1007/s10534-014-9730-y(Epub 2014 Apr 4)

    Article  PubMed  Google Scholar 

  35. Poon IKH, Parkes MAF, Jiang L, Atkin-Smith GK, Tixeira R, Gregory CD, Ozkocak DC et al (2019) Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J Extracell Vesicles 8(1):1608786. https://doi.org/10.1080/20013078.2019.1608786(eCollection 2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kakarla R, Hur J, Kim YJ, Kim J, Chwae YJ (2020) Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 52(1):1–6. https://doi.org/10.1038/s12276-019-0362-8(Epub 2020 Jan 9)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A et al (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120(10):1632–1648. https://doi.org/10.1161/CIRCRESAHA.117.309417

    Article  CAS  PubMed  Google Scholar 

  38. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750(eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom Clin Appl 9(3–4):358–367. https://doi.org/10.1002/prca.201400114(Epub 2015 Mar 19)

    Article  CAS  Google Scholar 

  40. Lv Y, Tan J, Miao Y, Zhang Q (2019) The role of microvesicles and its active molecules in regulating cellular biology. J Cell Mol Med 23(12):7894–7904. https://doi.org/10.1111/jcmm.14667(Epub 2019 Sep 27)

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Niel G, D'Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125(Epub 2018 Jan 17)

    Article  CAS  PubMed  Google Scholar 

  42. Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27

    Article  CAS  PubMed  Google Scholar 

  43. Lanuti P, Santilli F, Marchisio M, Pierdomenico L, Vitacolonna E, Santavenere E, Iacone A, Davì G, Romano M, Miscia S (2012) A novel flow cytometric approach to distinguish circulating endothelial cells from endothelial microparticles: relevance for the evaluation of endothelial dysfunction. J Immunol Methods 380(1–2):16–22. https://doi.org/10.1016/j.jim.2012.03.007(Epub 2012 Mar 31)

    Article  CAS  PubMed  Google Scholar 

  44. Markiewicz M, Richard E, Marks N, Ludwicka-Bradley A (2013) Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases. J Aging Res 2013:734509

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335(1):143–151

    Article  PubMed  Google Scholar 

  46. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124(7):423–441. https://doi.org/10.1042/CS20120309(Review)

    Article  CAS  Google Scholar 

  47. Garcia-Contreras M, Brooks RW, Boccuzzi L, Robbins PD, Ricordi C (2017) Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci 21(12):2940–2956

    CAS  PubMed  Google Scholar 

  48. Al-Qaissi A, Papageorgiou M, Deshmukh H, Madden LA, Rigby A, Kilpatrick ES, Atkin SL, Sathyapalan T (2019) Effects of acute insulin induced hypoglycaemia on endothelial microparticles in adults with and without type 2 diabetes. Diabetes Obes Metab 21(3):533–540. https://doi.org/10.1111/dom.13548

    Article  CAS  PubMed  Google Scholar 

  49. Huang-Doran I, Zhang CY, Vidal-Puig A (2017) Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 28(1):3–18. https://doi.org/10.1016/j.tem.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  50. Sáez T, Toledo F, Sobrevia L (2019) Impaired signalling pathways mediated by extracellular vesicles in diabesity. Mol Asp Med 66:13–20. https://doi.org/10.1016/j.mam.2018.12.001

    Article  CAS  Google Scholar 

  51. Grande R, Dovizio M, Marcone S, Szklanna PB, Bruno A, Ebhardt HA, Cassidy H, Ní Áinle F, Caprodossi A, Lanuti P, Marchisio M, Mingrone G, Maguire PB, Patrignani P (2019) Platelet-derived microparticles from obese individuals: characterization of number, size, proteomics, and crosstalk with cancer and endothelial cells. Front Pharmacol 10:7. https://doi.org/10.3389/fphar.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jayabalan N, Lai A, Ormazabal V, Adam S, Guanzon D, Palma C, Scholz-Romero K, Lim R, Jansson T, McIntyre HD, Lappas M, Salomon C (2019) Adipose tissue exosomal proteomic profile reveals a role on placenta glucose metabolism in gestational diabetes mellitus. J Clin Endocrinol Metab 104(5):1735–1752. https://doi.org/10.1210/jc.2018-01599

    Article  PubMed  Google Scholar 

  53. Redman CW, Sargent IL (2008) Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta 29(Suppl A):S73–S77. https://doi.org/10.1016/j.placenta.2007.11.016(Epub 2008 Jan 14)

    Article  CAS  PubMed  Google Scholar 

  54. Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, Longo S, Duncombe G, Mitchell MD, Rice GE, Illanes SE (2016) Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes 65(3):598–609. https://doi.org/10.2337/db15-0966

    Article  CAS  PubMed  Google Scholar 

  55. Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L (2018) Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Asp Med 60:69–80. https://doi.org/10.1016/j.mam.2017.12.002(Epub 2017 Dec 13)

    Article  Google Scholar 

  56. International Association of Diabetes, and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva AD, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3):676–682

    Article  PubMed Central  Google Scholar 

  57. Pieragostino D, Lanuti P, Cicalini I, Cufaro MC, Ciccocioppo F, Ronci M, Simeone P, Onofrj M, van der Pol E, Fontana A, Marchisio M, Del Boccio P (2019) Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom 204:103403. https://doi.org/10.1016/j.jprot.2019.103403

    Article  CAS  Google Scholar 

  58. de Rond L, Coumans FAW, Nieuwland R, van Leeuwen TG, van der Pol E (2018) Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Curr Protoc Cytom 86(1):e43. https://doi.org/10.1002/cpcy.43

    Article  CAS  PubMed  Google Scholar 

  59. Lanuti P, Simeone P, Rotta G, Almici C, Avvisati G, Azzaro R, Bologna G, Budillon A, Di Cerbo M, Di Gennaro E, Di Martino ML, Diodato A, Doretto P, Ercolino E, Falda A et al (2018) A standardized flow cytometry network study for the assessment of circulating endothelial cell physiological ranges. Sci Rep 8(1):5823. https://doi.org/10.1038/s41598-018-24234-0

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69(9):1037–1042. https://doi.org/10.1002/cyto.a.20333

    Article  PubMed  Google Scholar 

  61. Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N et al (2019) Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 49(10):1457–1973. https://doi.org/10.1002/eji.201970107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuo WP, Tigges JC, Toxavidis V (2017) Red blood cells: a source of extracellular vesicles. Methods Mol Biol 1660:15–22. https://doi.org/10.1007/978-1-4939-7253-1_2

    Article  CAS  PubMed  Google Scholar 

  63. Kandzija N, Zhang W, Motta-Mejia C, Mhlomi V, McGowan-Downey J, James T, Cerdeira AS, Tannetta D, Sargent I, Redman CW, Bastie CC, Vatish M (2019) Placental extracellular vesicles express active dipeptidyl peptidase IV; levels are increased in gestational diabetes mellitus. J Extracell Vesicles 8(1):1617000. https://doi.org/10.1080/20013078.2019.1617000(eCollection 2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xia Y, Zheng L, Zou X, Wang J, Zhong J, Zhong T (2019) Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy. J Extracell Vesicles 8(1):1625677

    Article  Google Scholar 

  65. Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48(2):180–186

    Article  CAS  PubMed  Google Scholar 

  66. Akbar N, Azzimato V, Choudhury RP, Aouadi M (2019) Extracellular vesicles in metabolic disease. Diabetologia 62(12):2179–2187. https://doi.org/10.1007/s00125-019-05014-5

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, Leiva A, Sanhueza C, Gutiérrez JA, Lappas M, Freeman DJ, Salomon C (2017) Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front Endocrinol (Lausanne) 8:239. https://doi.org/10.3389/fendo.2017.00239(eCollection 2017)

    Article  Google Scholar 

  68. Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-'t Hoen EN, de Jager W, Wauben MH, Kalkhoven E (2014) Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 22(10):2216–2223. https://doi.org/10.1002/oby.20847(Epub 2014 Jul 17)

    Article  CAS  Google Scholar 

  69. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky JM (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372–384.e12

    Article  CAS  PubMed  Google Scholar 

  70. Nair S, Jayabalan N, Guanzon D, Palma C, Scholz-Romero K, Elfeky O, Zuñiga F, Ormazabal V, Diaz E, Rice GE, Duncombe G, Jansson T, McIntyre HD, Lappas M, Salomon C (2018) Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin Sci (Lond) 132(22):2451–2467. https://doi.org/10.1042/CS20180487(Print 2018 Nov 30)

    Article  CAS  Google Scholar 

  71. Meziani F, Tesse A, David E, Martinez MC, Wangensten R, Schneider F, Andriantsitohaina R (2006) Shed membrane particles from pre-eclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 169:1473–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sabapatha A, Gercel-Taylor C, Taylor DD (2006) Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol 56:345–355

    Article  CAS  PubMed  Google Scholar 

  73. Salomon C, Torres MJ, Kobayashi M et al (2014) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE 9:e98667

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, Rice GE, Salomon C (2015) Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 213(4 Suppl):S173–S181. https://doi.org/10.1016/j.ajog.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  75. Yang C, Song G, Lim W (2019) Effects of extracellular vesicles on placentation and pregnancy disorders. Reproduction. https://doi.org/10.1530/REP-19-0147(2019 Jun 1)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rice GE, Scholz-Romero K, Sweeney E, Peiris H, Kobayashi M, Duncombe G, Mitchell MD, Salomon C (2015) The effect of glucose on the release and bioactivity of exosomes from first trimestertrophoblast cells. J Clin Endocrinol Metab 100(10):E1280–E1288. https://doi.org/10.1210/jc.2015-2270(Epub 2015 Aug 4)

    Article  CAS  PubMed  Google Scholar 

  77. Elfeky O, Longo S, Lai A, Rice GE, Salomon C (2017) Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta 50:60–69. https://doi.org/10.1016/j.placenta.2016.12.020(Epub 2016 Dec 21)

    Article  PubMed  Google Scholar 

  78. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T, Takizawa T (2009) Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod 81(4):717–729. https://doi.org/10.1095/biolreprod.108.075481

    Article  CAS  PubMed  Google Scholar 

  79. Gillet V, Ouellet A, Stepanov Y, Rodosthenous RS, Croft EK, Brennan K, Abdelouahab N, Baccarelli A, Takser L (2019) miRNA profiles in extracellular vesicles from serum early in pregnancies complicated by gestational diabetes mellitus. J Clin Endocrinol Metab 104(11):5157–5169. https://doi.org/10.1210/jc.2018-02693

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jayabalan N, Lai A, Nair S, Guanzon D, Scholz-Romero K, Palma C, McIntyre HD, Lappas M, Salomon C (2019) Quantitative proteomics by SWATH-MS suggest an association between circulating exosomesand maternal metabolic changes in gestational diabetes mellitus. Proteomics 19(1–2):e1800164. https://doi.org/10.1002/pmic.201800164

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by EV and MF. ML and EV contributed to clinical evaluation and support to the recruitment of patients. MF, FF, and EV contributed to data acquisition and interpretation. PL conducted the experiments. MDN and MM were the biostatisticians that performed and supervised the statistical analysis and they also helped the preparation of the figures and tables. The manuscript was drafted by MF and EV. LS contributed to the reviewed of the manuscript. All authors were involved in critical revision and approved the final version of the manuscript before submission. EV and MDN are the guarantors of this work.

Corresponding author

Correspondence to E. Vitacolonna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The procedures used were in accordance with the guidelines of the Helsinki Declaration on human experimentation. The investigational nature of the study was explained to all participants.

Informed consent

Informed consent was obtained, according to the Ethics Committee of the University “G. d’Annunzio", Chieti-Pescara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 35 kb)

40618_2020_1262_MOESM2_ESM.jpg

Supplementary file2 (JPG 187 kb) Work Flow of the flow cytometry protocol for EV analysis. Peripheral blood samples were obtained from a cohort of 50 GDM pregnant women and 50 healthy volunteers. 5 µl of whole blood were added to 195 µl of PBS 1X, then the reagents detailed in Supplementary Table S1 were mixed to the diluted blood. After 45 min of staining (RT, in the dark), 500 µl of PBS 1X were added to each tube and 1 x 106 events/sample were acquired by flow cytometry (FACSVerse, BD). By applying the gating strategy described in Supplementary Figure 2, absolute numbers and percentages of total EVs (tEVs), leukocyte-derived EVs (lEVs), platelet-derived EVs (pEVs), endothelium-derived EVs (aEVs) and adipocyte-derived EVs (aEVs) were obtained

40618_2020_1262_MOESM3_ESM.jpg

Supplementary file3 (JPG 170 kb) Gating strategy for EV identification and subtyping. A. The area with scattered parameters lower than that of platelets, on a FSC-H/SScSSC-H dotcontour-plot was established. B. This area was shown on a Phalloidin-H/LCD-H dot plot and EVs were identified as LCD positive/phalloidin negative events. C. Extracellular vesicles (LCD+/Phalloidin- events) were analysed on a CD45-H/CD41a-H dot-plot and CD45+ events were identified as leukocyte-derived EVs (lEVs). D. A logical gate excluding all the CD45+ events was then obtained and the resulting population was plotted on a CD31-H/CD41a-H dot-plot. Events showing the CD31+/CD41a+ phenotype were identified as platelet-derived EVs (pEVs), while the CD31+/CD41a- compartment represented endothelium-derived EVs (eEVs). E Adipocyte-derived were finally obtained on a CD45-H/CD36-H dot-plot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzago, M., Lanuti, P., Fraticelli, F. et al. Biological insight into the extracellular vesicles in women with and without gestational diabetes. J Endocrinol Invest 44, 49–61 (2021). https://doi.org/10.1007/s40618-020-01262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01262-0

Keywords

Navigation