Skip to main content
Log in

Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Fine and balanced regulation of cell proliferation and apoptosis are key to achieve ovarian follicle development from the primordial to the preovulatory stage and therefore assure female reproductive function. While gonadotropins are the major and most recognized regulators of follicle cell growth and function, other factors, both systemic and local, play equally important roles. This work is aimed at evaluating the effects of thyroid hormones (THs) on human granulosa luteinized (hGL) viability.

Methods

Human GL cells derived from assisted reproduction treatments were exposed to T3 or T4. Cell viability was evaluated by MTT assay. Apoptosis was evaluated by the TUNEL assay and active caspase-3 staining. StAR, CYP19A1,Caspase-3, P53 and BAX mRNA were evaluated by real-time PCR. LC3-I/-II, AKT and pAKT were evaluated by western blot.

Results

T3 and T4 promoted cell viability in a dose-dependent modality and modulate StAR and CYP19A1 expression. T3 and to a lesser extent T4 mitigated cell death induced by serum starvation by inhibition of caspase-3 activity and expression of P53 and BAX; and attenuate cell death experimentally induced by C2-ceramide. Cell death derived from starvation appeared to be involved in autophagic processes, as the levels of autophagic markers (LC3-II/LC3-I ratio) decreased when starved cells were exposed to T3 and T4. This effect was associated with an increase in pAkt levels.

Conclusion

From the present study, THs emerge as potent anti-apoptotic agents in hGL cells. This effect is achieved by inhibiting the apoptosis signalling pathway of BAX and caspase-3, while maintaining active the PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21(2):200–214. https://doi.org/10.1210/edrv.21.2.0394

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda F, Inoue N, Manabe N et al (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58(1):44–50. https://doi.org/10.1262/jrd.2011-012

    Article  CAS  PubMed  Google Scholar 

  3. Jiang JY, Cheung CK, Wang Y et al (2003) Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci 8:d222–d237. https://doi.org/10.2741/949

    Article  CAS  PubMed  Google Scholar 

  4. Palumbo A, Yeh J (1995) Apoptosis as a basic mechanism in the ovarian cycle: follicular atresia and luteal regression. J Soc Gynecol Investig 2(3):565–573. https://doi.org/10.1177/107155769500200310

    Article  CAS  PubMed  Google Scholar 

  5. Tilly JL, Kowalski KI, Johnson AL et al (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129(5):2799–2801. https://doi.org/10.1210/endo-129-5-2799

    Article  CAS  PubMed  Google Scholar 

  6. Canipari R (2000) Oocyte–granulosa cell interactions. Hum Reprod Update 6(3):279–289. https://doi.org/10.1093/humupd/6.3.279

    Article  CAS  PubMed  Google Scholar 

  7. Wakim AN, Polizotto SL, Buffo MJ et al (1993) Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil Steril 59(6):1187–1190. https://doi.org/10.1016/S0015-0282(16)55974-3

    Article  CAS  PubMed  Google Scholar 

  8. Pascual A, Aranda A (2013) Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 1830(7):3908–3916. https://doi.org/10.1016/j.bbagen.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Wang X, Wang Z et al (2013) Effect of different culture systems and 3, 5, 3′-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice. PLoS One 8(4):e61947. https://doi.org/10.1371/journal.pone.0061947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Guo L, Zhu B et al (2013) Effects of 3, 5, 3′-triiodothyronine (t3) and follicle stimulating hormone on apoptosis and proliferation of rat ovarian granulosa cells. Chin J Physiol 56(5):298–305. https://doi.org/10.4077/CJP.2013.BAB186

    Article  CAS  PubMed  Google Scholar 

  11. Fedail JS, Zheng K, Wei Q et al (2014) Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 46(3):594–604. https://doi.org/10.1007/s12020-013-0092-y

    Article  CAS  PubMed  Google Scholar 

  12. Poppe K, Velkeniers B, Glinoer D (2007) Thyroid disease and female reproduction. Clin Endocrinol (Oxf) 66(3):309–321. https://doi.org/10.1111/j.1365-2265.2007.02752.x

    Article  CAS  Google Scholar 

  13. Dittrich R, Beckmann MW, Oppelt PG et al (2011) Thyroid hormone receptors and reproduction. J Reprod Immunol 90(1):58–66. https://doi.org/10.1016/j.jri.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  14. Mintziori G, Anagnostis P, Toulis KA et al (2012) Thyroid diseases and female reproduction. Minerva Med 103(1):47–62

    CAS  PubMed  Google Scholar 

  15. Cho MK (2015) Thyroid dysfunction and subfertility. Clin Exp Reprod Med 42(4):131–135. https://doi.org/10.5653/cerm.2015.42.4.131

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vissenberg R, Manders VD, Mastenbroek S et al (2015) Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update 21(3):378–387. https://doi.org/10.1093/humupd/dmv004

    Article  CAS  PubMed  Google Scholar 

  17. Duarte-Guterman P, Navarro-Martin L, Trudeau VL (2014) Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 203:69–85. https://doi.org/10.1016/j.ygcen.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  18. Aghajanova L, Lindeberg M, Carlsson IB et al (2009) Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 18(3):337–347. https://doi.org/10.1016/S1472-6483(10)60091-0

    Article  CAS  PubMed  Google Scholar 

  19. Kinne A, Schulein R, Krause G (2011) Primary and secondary thyroid hormone transporters. Thyroid Res 4(Suppl 1):S7. https://doi.org/10.1186/1756-6614-4-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Canipari R, Mangialardo C, Di Paolo V et al (2018) Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J Endocrinol Invest 42(3):271–282. https://doi.org/10.1007/s40618-018-0912-2

    Article  CAS  PubMed  Google Scholar 

  21. Verga-Falzacappa C, Timperi E, Bucci B et al (2012) T(3) preserves ovarian granulosa cells from chemotherapy-induced apoptosis. J Endocrinol 215(2):281–289. https://doi.org/10.1530/JOE-12-0153

    Article  CAS  PubMed  Google Scholar 

  22. Verga-Falzacappa C, Mangialardo C, Patriarca V et al (2009) Thyroid hormones induce cell proliferation and survival in ovarian granulosa cells COV434. J Cell Physiol 221(1):242–253. https://doi.org/10.1002/jcp.21849

    Article  CAS  PubMed  Google Scholar 

  23. Morelli MB, Barberi M, Gambardella A et al (2008) Characterization, expression, and functional activity of pituitary adenylate cyclase-activating polypeptide and its receptors in human granulosa-luteal cells. J Clin Endocrinol Metab 93(12):4924–4932. https://doi.org/10.1210/jc.2007-2621

    Article  CAS  PubMed  Google Scholar 

  24. Innocenti F, Cerquetti L, Pezzilli S et al (2017) Effect of mitotane on mouse ovarian follicle development and fertility. J Endocrinol 234(1):29–39. https://doi.org/10.1530/JOE-17-0203

    Article  CAS  PubMed  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  26. Perks CM, Newcomb PV, Grohmann M et al (2003) Prolactin acts as a potent survival factor against C2-ceramide-induced apoptosis in human granulosa cells. Hum Reprod 18(12):2672–2677. https://doi.org/10.1093/humrep/deg496

    Article  CAS  PubMed  Google Scholar 

  27. Samuels HH, Stanley F, Casanova J (1979) Relationship of receptor affinity to the modulation of thyroid hormone nuclear receptor levels and growth hormone synthesis by l-triiodothyronine and iodothyronine analogues in cultured GH1 cells. J Clin Invest 63(6):1229–1240. https://doi.org/10.1172/JCI109418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobayashi N, Orisaka M, Cao M et al (2009) Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development. Endocrinology 150(12):5566–5574. https://doi.org/10.1210/en.2009-0262

    Article  CAS  PubMed  Google Scholar 

  29. Fitko R, Kucharski J, Szlezyngier B et al (1996) The concentration of GnRH in hypothalamus, LH and FSH in pituitary, LH, PRL and sex steroids in peripheral and ovarian venous plasma of hypo- and hyperthyroid, cysts-bearing gilts. Anim Reprod Sci 45(1–2):123–138. https://doi.org/10.1016/s0378-4320(96)01568-0

    Article  CAS  PubMed  Google Scholar 

  30. Maruo T, Hayashi M, Matsuo H et al (1987) The role of thyroid hormone as a biological amplifier of the actions of follicle-stimulating hormone in the functional differentiation of cultured porcine granulosa cells. Endocrinology 121(4):1233–1241. https://doi.org/10.1210/endo-121-4-1233

    Article  CAS  PubMed  Google Scholar 

  31. Goldman S, Dirnfeld M, Abramovici H et al (1993) Triiodothyronine (T3) modulates hCG-regulated progesterone secretion, cAMP accumulation and DNA content in cultured human luteinized granulosa cells. Mol Cell Endocrinol 96(1–2):125–131. https://doi.org/10.1210/jcem.82.6.3997

    Article  CAS  PubMed  Google Scholar 

  32. Goldman S, Dirnfeld M, Abramovici H et al (1997) Triiodothyronine and follicle-stimulating hormone, alone and additively together, stimulate production of the tissue inhibitor of metalloproteinases-1 in cultured human luteinized granulosa cells. J Clin Endocrinol Metab 82(6):1869–1873. https://doi.org/10.1210/jcem.82.6.3997

    Article  CAS  PubMed  Google Scholar 

  33. Hatsuta M, Tamura K, Shimizu Y et al (2004) Effect of thyroid hormone on CYP19 expression in ovarian granulosa cells from gonadotropin-treated immature rats. J Pharmacol Sci 94(4):420–425. https://doi.org/10.1254/jphs.94.420

    Article  CAS  PubMed  Google Scholar 

  34. Cecconi S, Rucci N, Scaldaferri ML et al (1999) Thyroid hormone effects on mouse oocyte maturation and granulosa cell aromatase activity. Endocrinology 140(4):1783–1788. https://doi.org/10.1210/endo.140.4.6635

    Article  CAS  PubMed  Google Scholar 

  35. Hirata R, Hojo T, Sano M et al (2015) Potential role of hCG in apoptosis of human luteinized granulosa cells. J Reprod Dev 61(1):67–73. https://doi.org/10.1262/jrd.2014-115

    Article  CAS  PubMed  Google Scholar 

  36. Kim WG, Zhu X, Kim DW et al (2013) Reactivation of the silenced thyroid hormone receptor beta gene expression delays thyroid tumor progression. Endocrinology 154(1):25–35. https://doi.org/10.1210/en.2012

    Article  CAS  PubMed  Google Scholar 

  37. Choi J, Jo M, Lee E et al (2011) Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells. Fertil Steril 95(4):1482–1486. https://doi.org/10.1016/j.fertnstert.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  38. Choi J, Jo M, Lee E et al (2014) AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia. Reproduction 147(1):73–80. https://doi.org/10.1530/REP-13-0386

    Article  CAS  PubMed  Google Scholar 

  39. Matikainen T, Perez GI, Zheng TS et al (2001) Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology 142(6):2468–2480. https://doi.org/10.1210/endo.142.6.8078

    Article  CAS  PubMed  Google Scholar 

  40. Perez GI, Robles R, Knudson CM et al (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21(2):200–203. https://doi.org/10.1038/5985

    Article  CAS  PubMed  Google Scholar 

  41. Herr D, Keck C, Tempfer C et al (2004) Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells. Mol Reprod Dev 69(4):397–401. https://doi.org/10.1002/mrd.20137

    Article  CAS  PubMed  Google Scholar 

  42. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29(2):211–218. https://doi.org/10.1016/j.yfrne.2007.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from Sapienza University of Rome, Ateneo Federato 2017–2018 (to R. C.) (Grand No.: Finanziamenti Ateneo per la ricerca 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Canipari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was carried out according to the principles of the Declaration of Helsinki and was approved by the local institutional review board.

Informed consent

Informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paolo, V., Mangialardo, C., Zacà, C. et al. Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival. J Endocrinol Invest 43, 821–831 (2020). https://doi.org/10.1007/s40618-019-01169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01169-5

Keywords

Navigation