Skip to main content
Log in

Short-term, supra-physiological rhGH administration induces transient DNA damage in peripheral lymphocytes of healthy women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

While a good safety for recombinant human growth hormone (rhGH) therapy at replacement doses is recognized, a possible link between high concentration of the GH-IGF-I axis hormones and side negative effect has been reported. The aim of this pilot study was to assess whether a short-term exposure to supra-physiological doses of rhGH may affect DNA integrity in human lymphocytes (PBL).

Methods

Eighteen healthy Caucasian female (24.2 ± 3.5 years) were randomly included in a Control (n = 9) and rhGH administration group (n = 9, 3-week treatment). DNA damage (comet assay), chromosomal breaks, and mitotic index in phytohemagglutinin-stimulated PBL were evaluated before (PRE), immediately (POST), and 30 days (POST30) after the last rhGH administration (0.029 mg kg− 1 BW; 6 days/week), together with serum IGF-1 and IGFBP-3 concentrations.

Results

rhGH administration increased IGF-I, without evidence of persisting IGF-I and IGFBP-3 changes 30 days after withdrawal. Total DNA breakage (% DNA in tails) was not significantly different in subjects treated with rhGH in comparison with controls, although the rhGH-treated subjects showed an higher percentage of heavily damaged nuclei immediately after the treatment (POST30 vs. PRE: p = 0.003), with a lower mitogenic potential of lymphocytes, detectable up to the POST30 (PRE vs. POST: p = 0.02; PRE vs. POST30: p = 0.007).

Conclusions

This pilot study showed that 3 weeks of short-term supra-physiological rhGH administration in healthy women induce a transient DNA damage and mitogenic impairment in PBL. The analysis of DNA damage should be explored as useful tool in monitoring the mid to long-term effects of high rhGH treatment or abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hupin D, Roche F, Gremeaux V, Chatard JC, Oriol M, Gaspoz JM, Barthélémy JC, Edouard P (2015) Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥ 60 years: a systematic review and meta-analysis. Br J Sports Med 49:1262–1267

    Article  PubMed  Google Scholar 

  2. Beltran Valls MR, Dimauro I, Brunelli A, Tranchita E, Ciminelli E, Caserotti P, Duranti G, Sabatini S, Parisi P, Parisi A, Caporossi D (2014) Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. Age 36:759–772

    Article  Google Scholar 

  3. Ceci R, Beltran Valls MR, Duranti G, Dimauro I, Quaranta F, Pittaluga M, Sabatini S, Caserotti P, Parisi P, Parisi A, Caporossi D (2014) Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol. 2:65–72

    Article  CAS  PubMed  Google Scholar 

  4. Brunelli A, Dimauro I, Sgrò P, Emerenziani GP, Magi F, Baldari C, Guidetti L, Di Luigi L, Parisi P, Caporossi D (2012) Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med Sci Sports Exerc 44:1871–1880

    Article  CAS  PubMed  Google Scholar 

  5. Baldari C, Di Luigi L, Emerenziani GP, Gallotta MC, Sgrò P, Guidetti L (2009) Is explosive performance influenced by androgen concentrations in young male soccer players? Br J Sports Med 43:191–194

    Article  CAS  PubMed  Google Scholar 

  6. Saugy M, Robinson N, Saudan C, Baume N, Avois L, Mangin P (2006) Human growth hormone doping in sport. Br J Sports Med 40:i35–i39

    Article  PubMed  PubMed Central  Google Scholar 

  7. Holt RI, Erotokritou-Mulligan I, McHugh C, Bassett EE, Bartlett C, Fityan A, Bacon JL, Cowan DA, Sönksen PH (2010) The GH-2004 project: the response of IGF1 and type III pro-collagen to the administration of exogenous GH in non-Caucasian amateur athletes. Eur J Endocrinol 163:45–54

    Article  CAS  PubMed  Google Scholar 

  8. Di Luigi L (2008) Supplements and endocrine system in athletes. Clin Sports Med 27:131–151

    Article  PubMed  Google Scholar 

  9. Di Luigi L, Romanelli F, Lenzi A (2005) Androgenic anabolic steroids abuse in males. J Endocrinol Invest 28:81–84

    CAS  PubMed  Google Scholar 

  10. Di Luigi L, Baldari C, Sgrò P, Emerenziani GP, Gallotta MC, Bianchini S, Romanelli F, Pigozzi F, Lenzi A, Guidetti L (2008) The type 5 phosphodiesterase’s inhibitor tadalafil influences salivary cortisol, testosterone and dehydroepiandrosterone sulfate response to maximal exercise in healthy man. J Clin Endocrinol Metab 93:3510–3514

    Article  CAS  PubMed  Google Scholar 

  11. Di Luigi L, Rossi C, Sgrò P, Fierro V, Romanelli F, Baldari C, Guidetti L (2007) Do non-steroidal anti-inflammatory drugs influence the steroid hormone milieu in male athletes? Int J Sport Med 28:809–814

    Article  CAS  Google Scholar 

  12. Sabatini S, Sgrò P, Duranti G, Ceci R, Di Luigi L (2011) Tadalafil alters energy metabolism in C2C12 skeletal muscle cells. Acta Biochim Pol 58:237–242

    CAS  PubMed  Google Scholar 

  13. Duranti G, La Rosa P, Dimauro I, Wannenes F, Bonini S, Sabatini S, Parisi P, Caporossi D (2011) Effects of salmeterol on skeletal muscle cells: metabolic and proapoptotic features. Med Sci Sports Exerc 43:2259–2273

    Article  CAS  PubMed  Google Scholar 

  14. Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P (2014) Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 9:e102993. doi:10.1371/journal.pone.0102993

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dimauro I, Magi F, La Sala G, Pittaluga M, Parisi P, Caporossi D (2011) Modulation of the apoptotic pathway in skeletal muscle models: the role of growth hormone. Growth Factors 29:21–35

    Article  CAS  PubMed  Google Scholar 

  16. Di Luigi L, Baldari C, Pigozzi F, Emerenziani GP, Gallotta MC, Iellamo F, Ciminelli E, Sgrò P, Romanelli F, Lenzi A, Guidetti L (2008) The long-acting phosphodiesterase inhibitor tadalafil does not influence athletes’ VO2max, aerobic, and anaerobic thresholds in normoxia. Int J Sports Med 29:110–115

    Article  CAS  PubMed  Google Scholar 

  17. Roelfsema V, Clark RG (2001) The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol 12:1297–1306

    CAS  PubMed  Google Scholar 

  18. Hindmarsh PC, Dattani MT (2006) Use of growth hormone in children. Nat Clin Pract Endocrinol Metab 2:260–268

    Article  CAS  PubMed  Google Scholar 

  19. Appelman-Dijkstra NM, Claessen KM, Roelfsema F, Pereira AM, Biermasz NR (2013) Long-term effects of recombinant human GH replacement in adults with GH deficiency: a systematic review. Eur J Endocrinol 169:R1–R14

    Article  CAS  PubMed  Google Scholar 

  20. Ferro P, Ventura R, Pérez-Mañá C, Farré M, Segura J (2016) Genetic and protein biomarkers in blood for the improved detection of GH abuse. J Pharm Biomed Anal 17:111–118

    Article  Google Scholar 

  21. Hamurcu Z, Cakir I, Donmez-Altuntas H, Bitgen N, Karaca Z, Elbuken G, Bayram F (2016) Micronucleus evaluation in mitogen-stimulated lymphocytes of patients with acromegaly. Metabolism 60:1620–1626

    Article  Google Scholar 

  22. Tedeschi B, Spadoni GL, Sanna ML, Vernole P, Caporossi D, Cianfarani S, Nicoletti B, Boscherini B (1993) Increased chromosome fragility in lymphocytes of short normal children treated with recombinant human growth hormone. Hum Genet 91:459–463

    Article  CAS  PubMed  Google Scholar 

  23. Rudd MF, Webb EL, Matakidou A, Sellick GS, Williams RD, Bridle H, Eisen T, Houlston RS (2006) GELCAPS Consortium. Variants in the GH-IGF axis confer susceptibility to lung cancer. Genome Res 16:693–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gallagher EJ, LeRoith D (2011) Is growth hormone resistance/IGF-1 reduction good for you? Cell Metab 13:355–356

    Article  CAS  PubMed  Google Scholar 

  25. Di Luigi L, Rigamonti AE, Agosti F, Mencarelli M, Sgrò P, Marazzi N, Cella SG, Müller EE, Sartorio A (2009) Combined evaluation of resting IGF1, N-terminal propeptide of type III procollagen and C-terminal cross-linked telopeptide of type I collagen levels might be useful for detecting inappropriate GH administration in female athletes. Eur J Endocrinol 160:753–758

    Article  CAS  PubMed  Google Scholar 

  26. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  27. Yuen K, Frystyk J, Umpleby M, Fryklund L, Dunger D (2004) Changes in free rather than total insulin-like growth factor-I enhance insulin sensitivity and suppress endogenous peak growth hormone (GH) release following short-term low-dose GH administration in young healthy adults. J Clin Endocrinol Metab 89:3956–3964

    Article  CAS  PubMed  Google Scholar 

  28. Caporossi D, Argentin G, Pittaluga M, Parisi P, Tedeschi B, Vernole P, Cicchetti R (2004) Individual susceptibility to DNA telomerase inhibitors: a study on the chromosome instability induced by 3′-azido-3′-deoxythymidine in lymphocytes of elderly twins. Mutagenesis 19:99–104

    Article  CAS  PubMed  Google Scholar 

  29. Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A (2007) In Vivo Comet Assay Workgroup, part of the Fourth International Workgroup on Genotoxicity Testing. Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35

    Article  CAS  PubMed  Google Scholar 

  30. Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans, International Programme on Chemical Safety. Mutat Res 463:111–172

    Article  CAS  PubMed  Google Scholar 

  31. Pittaluga M, Sgadari A, Dimauro I, Tavazzi B, Parisi P, Caporossi D. (2015) Physical exercise and redox balance in type 2 diabetics: effects of moderate training on biomarkers of oxidative stress and DNA damage evaluated through comet assay. Oxid Med Cell Longev. doi:10.1155/2015/981242

    PubMed  PubMed Central  Google Scholar 

  32. Chandna S (2004) Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry A 61:127–133

    Article  PubMed  Google Scholar 

  33. Pfeiffer P, Goedecke W, Obe G (2000) Mechanisms of DNA double strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 15:289–302

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberger A, Rössler U, Hornhardt S, Sauter W, Bickeböller H, Wichmann HE, Gomolka M (2011) Validation of a fully automated COMET assay: 1.75 million single cells measured over a 5 year period. DNA Repair (Amst) 10:322–337

    Article  CAS  Google Scholar 

  35. Hohla F, Buchholz S, Schally AV, Seitz S, Rick FG, Szalontay L, Varga JL, Zarandi M, Halmos G, Vidaurre I, Krishan A, Kurtoglu M, Chandna S, Aigner E, Datz C (2009) GHRH antagonist causes DNA damage leading to p21 mediated cell cycle arrest and apoptosis in human colon cancer cells. Cell Cycle 8:3149–3156

    Article  CAS  PubMed  Google Scholar 

  36. Jeay S, Sonenshein GE, Postel-Vinay MC, Kelly PA, Baixeras E (2002) Growth hormone can act as a cytokine controlling survival and proliferation of immune cells: new insights into signaling pathways. Mol Cell Endocrinol 188:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Loeper S, Ezzat S. (2008) Acromegaly: re-thinking the cancer risk. Rev Endocr Metab Disord 9: 41–58

    Article  CAS  PubMed  Google Scholar 

  38. Wojewódzka M, Kruszewski M, Iwanenko T, Collins AR, Szumiel I (1999) Lack of adverse effect of smoking habit on DNA strand breakage and base damage, as revealed by the alkaline comet assay. Mutat Res 440:19–25

    Article  PubMed  Google Scholar 

  39. Slyper AH, Shadley JD, van Tuinen P, Richton SM, Hoffmann RG, Wyatt DT (2000) A study of chromosomal aberrations and chromosomal fragility after recombinant growth hormone treatment. Ped Res 47:634–639

    Article  CAS  Google Scholar 

  40. Keane J, Tajouri L, Gray B. (2016) Recombinant human growth hormone and insulin-like growth factor-1 do not affect mitochondrial derived highly reactive oxygen species production in peripheral blood mononuclear cells under conditions of substrate saturation in-vitro. Nutr Metab (Lond) 4:13–45

    Google Scholar 

  41. Anagnostis P, Efstathiadou ZA, Gougoura S, Polyzos SA, Karathanasi E, Dritsa P, Kita M, Koukoulis GN (2013) Oxidative stress and reduced antioxidative status, along with endothelial dysfunction in acromegaly. Horm Metab Res 45:314–318

    CAS  PubMed  Google Scholar 

  42. Bayram F, Bitgen N, Donmez-Altuntas H, Cakir I, Hamurcu Z, Sahin F, Simsek Y, Baskol G (2014) Increased genome instability and oxidative DNA damage and their association with IGF-1 levels in patients with active acromegaly. Growth Horm IGF Res 24:29–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Serena Bianchini for the great support in laboratory’s activities and assays. This research was supported by grants of the Anti-Doping Commission (CVD) of the Italian Ministry of Health to Prof. Eugenio E. Muller (†Deceased) and to MP. The funders had not role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caporossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

C. Fantini, P. Sgrò, D. Caporossi, and L. Di Luigi contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantini, C., Sgrò, P., Pittaluga, M. et al. Short-term, supra-physiological rhGH administration induces transient DNA damage in peripheral lymphocytes of healthy women. J Endocrinol Invest 40, 645–652 (2017). https://doi.org/10.1007/s40618-016-0603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0603-9

Keywords

Navigation