Skip to main content
Log in

Analysis of the association between plasma PCSK9 and Lp(a) in Han Chinese

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

It has been reported that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors can significantly reduce lipoprotein(a) [Lp(a)], and the mechanism for Lp(a) reduction remains unclear. Recently an interesting clinical research with a small sample showed a positive correlation between plasma PCSK9 and Lp(a) levels in diabetes. Here we aimed to use a relatively large sample to investigate whether such an association exists in Han Chinese.

Methods

A total of 783 inpatients were consecutively enrolled and composed of 172 patients with type 2 diabetes mellitus (T2DM) and 611 non-T2DM subjects. Plasma PCSK9 level was measured by ELISA, and its association with Lp(a) was assayed by Spearman’s correlation and multiple regression. Clinical and biochemical parameters were determined in all subjects studied.

Results

No significant differences in PCSK9 and Lp(a) levels were found between T2DM and non-T2DM patients. PCSK9 level was not related to Lp(a) level either in T2DM or non-T2DM group in bivariate correlation and multiple linear regression analysis. Additionally, no association between the levels of PCSK9 and Lp(a) was found in well, poorly controlled T2DM patients or in T2DM patients with or without coronary artery disease (CAD). Besides, no difference was found among the PCSK9 values across tertiles of Lp(a) level.

Conclusion

We found no association of plasma PCSK9 levels with Lp(a) level in Han Chinese with or without T2DM, suggesting that Lp(a) reduction by PCSK9 inhibitors may not be achieved simply through PCSK9 pathway at least in Chinese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCSK9:

Proprotein convertase subtilisin/kexin type 9

Lp(a):

Lipoprotein(a)

T2DM:

Type 2 diabetes mellitus

CAD:

Coronary artery disease

ASCVD:

Atherosclerotic cardiovascular disease

LDL-C:

Low-density lipoprotein cholesterol

HDL-C:

High-density lipoprotein cholesterol

TG:

Triglycerides

LDL-R:

Low-density lipoprotein receptor

Apo:

Apolipoprotein

Hs-CRP:

High-sensitivity C-reactive protein

BMI:

Body mass index

OADs:

Oral anti-diabetic drugs

HbA1c:

Glycated hemoglobin

References

  1. Lamon-Fava S, Diffenderfer MR, Marcovina SM (2014) Lipoprotein(a) metabolism. Curr Opin Lipidol 25(3):189–193

    Article  CAS  PubMed  Google Scholar 

  2. Nordestgaard BG, Chapman MJ, Ray K et al (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31(23):2844–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kassner U, Schlabs T, Rosada A, Steinhagen-Thiessen E (2015) Lipoprotein(a)—an independent causal risk factor for cardiovascular disease and current therapeutic options. Atheroscler Suppl 18:263–267

    Article  PubMed  Google Scholar 

  4. Genser B, Dias KC, Siekmeier R, Stojakovic T, Grammer T, Maerz W (2011) Lipoprotein (a) and risk of cardiovascular disease—a systematic review and meta analysis of prospective studies. Clin Lab 57(3–4):143–156

    PubMed  Google Scholar 

  5. Norata GD, Ballantyne CM, Catapano AL (2013) New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J 34(24):1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seidah NG, Benjannet S, Wickham L et al (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100(3):928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maxwell KN, Breslow JL (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA 101(18):7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abifadel M, Varret M, Rabes JP et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156

    Article  CAS  PubMed  Google Scholar 

  9. Seidah NG, Awan Z, Chretien M, Mbikay M (2014) PCSK9: a key modulator of cardiovascular health. Circ Res 114(6):1022–1036

    Article  CAS  PubMed  Google Scholar 

  10. Almontashiri NA, Vilmundarson RO, Ghasemzadeh N et al (2014) Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One 9(9):e106294

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li S, Zhang Y, Xu RX et al (2015) Proprotein convertase subtilisin-kexin type 9 as a biomarker for the severity of coronary artery disease. Ann Med 47(5):386–393

    Article  PubMed  Google Scholar 

  12. Desai NR, Kohli P, Giugliano RP et al (2013) AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C assessment with proprotein convertase subtilisin kexin type 9 monoclonal antibody inhibition combined with statin therapy (LAPLACE)-thrombolysis in myocardial infarction (TIMI) 57 trial. Circulation 128(9):962–969

    Article  CAS  PubMed  Google Scholar 

  13. Raal FJ, Giugliano RP, Sabatine MS et al (2014) Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145). J Am Coll Cardiol 63(13):1278–1288

    Article  CAS  PubMed  Google Scholar 

  14. Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML (2015) Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem 290(18):11649–11662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nekaies Y, Baudin B, Kelbousi S, Sakly M, Attia N (2015) Plasma proprotein convertase subtilisin/kexin type 9 is associated with Lp(a) in type 2 diabetic patients. J Diabetes Complications 29(8):1165–1170

    Article  PubMed  Google Scholar 

  16. Li S, Guo Y-L, Xu R-X et al (2014) Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234(2):441–445

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Zhu C-G, Xu R-X et al (2014) Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol 8(5):494–500

    Article  PubMed  Google Scholar 

  18. Lambert G, Ancellin N, Charlton F et al (2008) Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 54(6):1038–1045

    Article  CAS  PubMed  Google Scholar 

  19. Wassef H, Bissonnette S, Saint-Pierre N et al (2015) The apoB-to-PCSK9 ratio: a new index for metabolic risk in humans. J Clin Lipidol 9(5):664–675

    Article  PubMed  Google Scholar 

  20. Cui Q, Ju X, Yang T et al (2010) Serum PCSK9 is associated with multiple metabolic factors in a large Han Chinese population. Atherosclerosis 213(2):632–636

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Xu RX, Zhang Y et al (2015) Relation of resistin to proprotein convertase subtilisin-kexin type 9 levels in coronary artery disease patients with different nutritional status. J Endocrinol Invest 38(12):1291–1299

    Article  CAS  PubMed  Google Scholar 

  22. Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH (2009) Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab 94(7):2537–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ADA (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26 (Supp l):S5–S20

  24. Taskinen MR (2003) Diabetic dyslipidaemia: from basic research to clinical practice*. Diabetologia 46(6):733–749

    Article  PubMed  Google Scholar 

  25. Wu L, Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63(12):1469–1479

    Article  CAS  PubMed  Google Scholar 

  26. Vergès B, Duvillard L, Brindisi MC et al (2011) Lack of association between plasma PCSK9 and LDL-apoB100 catabolism in patients with uncontrolled type 2 diabetes. Atherosclerosis 219(1):342–348

    Article  PubMed  Google Scholar 

  27. Brouwers MCGJ, Troutt JS, van Greevenbroek MMJ et al (2011) Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis 217(1):263–267

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Zhang Y, Liu J et al (2015) Role of lipoprotein(a) in predicting the severity of new on-set coronary artery disease in type 2 diabetics: a Gensini score evaluation. Diabetes Vasc Dis Res 12(4):258–264

    Article  CAS  Google Scholar 

  29. Boronat M, Saavedra P, Pérez-Martín N, López-Madrazo MJ, Rodríguez-Pérez C, Nóvoa FJ (2012) High levels of lipoprotein(a) are associated with a lower prevalence of diabetes with advancing age: results of a cross-sectional epidemiological survey in Gran Canaria, Spain. Cardiovasc Diabetol 11(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM (2010) Lipoprotein(a) and risk of type 2 diabetes. Clin Chem 56(8):1252–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srinivasan SR, Dahlen GH, Jarpa RA, Webber LS, Berenson GS (1991) Racial (black-white) differences in serum lipoprotein (a) distribution and its relation to parental myocardial infarction in children. Bogalusa Heart Study. Circulation 84(1):160–167

    Article  CAS  PubMed  Google Scholar 

  32. Kappelle PJWH, Lambert G, Dahlbäck B, Nielsen LB, Dullaart RPF (2011) Relationship of plasma apolipoprotein M with proprotein convertase subtilisin–kexin type 9 levels in non-diabetic subjects. Atherosclerosis 214(2):492–494

    Article  CAS  PubMed  Google Scholar 

  33. Cariou B, Le Bras M, Langhi C et al (2010) Association between plasma PCSK9 and gamma-glutamyl transferase levels in diabetic patients. Atherosclerosis 211(2):700–702

    Article  CAS  PubMed  Google Scholar 

  34. Baass A, Dubuc G, Tremblay M et al (2009) Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 55(9):1637–1645

    Article  CAS  PubMed  Google Scholar 

  35. Costet P, Hoffmann MM, Cariou B, Guyomarc’h Delasalle B, Konrad T, Winkler K (2010) Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212(1):246–251

    Article  CAS  PubMed  Google Scholar 

  36. Sahebkar A, Simental-Mendía LE, Guerrero-Romero F, Golledge J, Watts GF (2015) Effect of statin therapy on plasma PCSK9 concentrations: a systematic review and meta-analysis of clinical trials. Diabetes Obes Metab. doi:10.1111/dom.12536:n/a-n/a

    PubMed  Google Scholar 

  37. Araki S, Suga S, Miyake F et al (2014) Circulating PCSK9 levels correlate with the serum LDL cholesterol level in newborn infants. Early Hum Dev 90(10):607–611

    Article  CAS  PubMed  Google Scholar 

  38. Qi Q, Workalemahu T, Zhang C, Hu FB, Qi L (2011) Genetic variants, plasma lipoprotein(a) levels, and risk of cardiovascular morbidity and mortality among two prospective cohorts of type 2 diabetes. Eur Heart J 33(3):325–334

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yeang C, Witztum JL, Tsimikas S (2015) ‘LDL-C’  =  LDL-C  +  Lp(a)-C. Curr Opin Lipidol 26(3):169–178

    Article  CAS  PubMed  Google Scholar 

  40. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36(9):1539–1550

    Article  CAS  PubMed  Google Scholar 

  41. Tsimikas S, Hall JL (2012) Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol 60(8):716–721

    Article  CAS  PubMed  Google Scholar 

  42. Besseling J, Kastelein JJP, Defesche JC, Hutten BA, Hovingh GK (2015) Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313(10):1029

    Article  CAS  PubMed  Google Scholar 

  43. Ye Z, Haycock PC, Gurdasani D et al (2014) The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? Diabetes 63:12

    Article  Google Scholar 

  44. Ding L, Song A, Dai M et al (2015) Serum lipoprotein (a) concentrations are inversely associated with T2D, prediabetes, and insulin resistance in a middle-aged and elderly Chinese population. J Lipid Res 56(4):920–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao J, Manthena PV, Haas ME, Ling AV, Shin D-J, GM J (2015) Role of insulin in the regulation of proprotein convertase subtilisin/kexin type 9. Arterioscler Thromb Vasc Biol 35:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (81070171, 81241121), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20111106110013), the Capital Special Foundation of Clinical Application Research (Z121107001012015), the Capital Health Development Fund (2011400302), and the Beijing Natural Science Foundation (7131014) awarded to Dr. Jian-Jun Li, MD, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-J. Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Ethical approval

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations.

Informed consent

Informed consent has been obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Li, S., Zhang, Y. et al. Analysis of the association between plasma PCSK9 and Lp(a) in Han Chinese. J Endocrinol Invest 39, 875–883 (2016). https://doi.org/10.1007/s40618-016-0433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0433-9

Keywords

Navigation