Skip to main content

Advertisement

Log in

Treatment of post-menopausal osteoporosis: beyond bisphosphonates

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Osteoporosis is a highly prevalent condition, characterized by compromised bone strength and fragility fractures and with an important associated socio-economic burden. Bisphosphonates are well established as the first line treatment for osteoporosis. However, while randomized control trials have in general demonstrated reasonable anti-fracture efficacy at the spine, they have shown moderate reduction in fracture incidence for non-vertebral sites. Furthermore, oral bisphosphonates are commonly associated with adverse gastrointestinal effects and both oral and parenteral bisphosphonates have been linked with osteonecrosis of the jaw and atypical femoral fracture, two rare but debilitating side effects. In addition, bisphosphonates are not recommended in patients with GFR <35 ml/min/1.73 m2. Hence, there is a clear requirement for newer agents, which are able to reduce fracture risk further, whilst overcoming the limitations of bisphosphonates. Over the past 20 years, knowledge and a deeper understanding of the various signalling pathways involved in bone remodelling has increased, enabling identification of additional targets for therapy. This review focuses on these newer therapies and includes anti-resorptive agents such as raloxifene and other selective oestrogen receptor modulators, the monoclonal antibody denosumab (which inhibits the RANKL pathway), odanacatib, a cathepsin K inhibitor and the anabolic agents, PTH analogue; PTH (1–34) and anti-sclerostin antibodies (activator of the Wnt pathway). Strontium ranelate will not be reviewed as recent reports highlight concerns surrounding its cardiovascular safety and together with an apparent increased risk of thrombosis, its future use remains uncertain. Some of these agents such as raloxifene, denosumab and teriparatide are already in clinical use whilst others are at varying stages of development. This review will provide an overview of the mechanisms of action of these therapeutic agents on the skeleton and assess their efficacy in osteoporosis and fracture prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BRC:

Bone remodelling compartment

RANKL:

Receptor activator of nuclear factor kappa-B ligand

OPG:

Osteoprotegerin

BMU:

Basic multicellular unit

VEGF:

Vascular endothelial growth factor

M-CSF:

Macrophage colony stimulating factor

LRP 5/6:

Low-density lipoprotein receptor-related protein 5 or 6

GSK:

3beta-glycogen synthase kinase

Tcf/Lef:

T cell factor/lymphoid enhancer factors

RUNX2:

Runt-related transcription factor 2

PMW:

Postmenopausal women

PTHR1:

Parathyroid hormone receptor

PKA:

Protein kinase A

PKC:

Protein kinase C

SOST:

Sclerostin gene

ER-alpha:

Oestrogen receptor-alpha

FasL:

Fas-ligand

MAPK:

Mitogen-activated protein kinase

AFF:

Atypical femoral fracture

ONJ:

Osteonecrosis of the jaw

SRE:

Skeletal-related events

GIOP:

Glucocorticoid-induced osteoporosis

References

  1. National Osteoporosis Society. Key facts and figures. http://www.nos.org.uk/page.aspx?pid=328. Updated 2013. Accessed 3 Dec 2013

  2. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  CAS  PubMed  Google Scholar 

  3. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allen EH, Quinn JM, Gillespie MT, Martin TJ, Sims NA (2008) Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23:2025–2032

    Article  CAS  PubMed  Google Scholar 

  5. Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspective. J Clin Endocrinol Metab 97:311–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11:219–227

    Article  PubMed Central  PubMed  Google Scholar 

  7. Eriksen EF, Qvesel D, Hauge EM, Melsen F (2005) Further evidence that vascular remodeling spaces are lined by cells of osteogenic origin: characterization of a possible coupling structure. J Bone Miner Res 15:S371

    Google Scholar 

  8. Frost HM (1969) Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237

    Article  CAS  PubMed  Google Scholar 

  9. Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192

    Article  CAS  PubMed  Google Scholar 

  10. Tombran-Tink J, Barnstable CJ (2004) Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochem Biophys Res Commun 316:573–579

    Article  CAS  PubMed  Google Scholar 

  11. Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–747

    Article  CAS  PubMed  Google Scholar 

  12. Street J, Lenehan B (2009) Vascular endothelial growth factor regulates osteoblast survival—evidence for an autocrine feedback mechanism. J Orthop Surg Res 4:1–13

    Article  Google Scholar 

  13. Khosla S. The OPG/RANKL/RANK system. Endocrinol 2001;142:5050–5055

  14. Humphrey MB, Lanier LL, Nakamura MC (2005) Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev 208:50–65

    Article  CAS  PubMed  Google Scholar 

  15. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124:991–998

    Article  CAS  PubMed  Google Scholar 

  16. Gambardella A, Nagaraju CK, O’Shea PJ, Mohanty ST, Kottam L, Pilling J, Sullivan M, Djerbi M, Koopmann W, Croucher PI, Bellantuono I (2011) Glycogen synthase kinase-3α/β inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage. J Bone Miner Res 26:811–821

    Article  CAS  PubMed  Google Scholar 

  17. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Otto F, Lubbert M, Stock M (2003) Upstream and downstream targets of RUNX proteins. J Cell Biochem 89:9–18

    Article  CAS  PubMed  Google Scholar 

  19. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    Article  CAS  PubMed  Google Scholar 

  22. Xiao-Juan X, Lin S, Yan-Ping Y, Rui Z, Bo S, Cheng-Gang L, Man-Xiang Wu (2013) Serum β-catenin levels associated with the ratio of RANKL/OPG in patients with postmenopausal osteoporosis. Int J Endocrinol 2013:534352

    Google Scholar 

  23. De Toni EN, Thieme SE, Herbst A, Behrens A, Stieber P, Jung A, Blum H, Göke B, Kolligs FT (2008) OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon cancer. Clin Cancer Res 14:4713–4718

    Article  PubMed  Google Scholar 

  24. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ (2011) Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6:e25900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643

    Article  CAS  PubMed  Google Scholar 

  26. Pleiner-Duxneuner J, Zwettler E, Paschalis E (2009) Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int 84:159–170

    Article  CAS  PubMed  Google Scholar 

  27. Zaidi M, Inzerillo AM, Moonga BS, Bevis PJ, Huang CL (2002) Forty years of calcitonin-where are we now? A tribute to the work of Iain Macintyre, FRS. Bone 30:655–663

    Article  CAS  PubMed  Google Scholar 

  28. Vescini F, Grimaldi F (2012) PTH 1-84: bone rebuilding as a target for the therapy of severe osteoporosis. Clin Cases Miner Bone Metab 9:31–36

    PubMed Central  PubMed  Google Scholar 

  29. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K (2007) New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res 22:717–723

    Article  PubMed  Google Scholar 

  30. Qin L, Raggatt LJ, Partridge NC (2004) Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab 15:60–65

    Article  CAS  PubMed  Google Scholar 

  31. Jilka RL, O’Brien CA, Bartell SM, Weinstein RS, Manolagas SC (2010) Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and independent mechanisms. J Bone Miner Res 25:2427–2437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C, Cao X (2008) Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev 22:2968–2979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  CAS  PubMed  Google Scholar 

  34. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, Chandrasekhar S, Martin TJ, Onyia JE (2001) Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142:4047–4054

    CAS  PubMed  Google Scholar 

  35. Manolagas SC, O’Brien CA, Almeida M (2013) The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9:699–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27:535–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  38. Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E, Onal M, Xiong J, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2013) Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123:394–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60

    Article  PubMed  CAS  Google Scholar 

  40. Pacifici R (1999) Aging and cytokine production. Calcif Tissue Int 65:345–351

    Article  CAS  PubMed  Google Scholar 

  41. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC (1992) 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effect of estrogens. J Clin Invest 89:883–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kimble RB, Srivastava S, Ross FP, Matayoshi A, Pacifici R (1996) Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271:28890–28897

    Article  CAS  PubMed  Google Scholar 

  43. Lerner UH (2006) Bone remodeling in post-menopausal osteoporosis. J Dent Res 85:584–595

    Article  CAS  PubMed  Google Scholar 

  44. Pacifici R (2012) Role of T cells in ovariectomy induced bone loss-revisited. J Bone Miner Res 27:231–239

    Article  PubMed  Google Scholar 

  45. Horowitz MC, Fretz JA, Lorenzo JA (2010) How B cells influence bone biology in health and disease. Bone 47:472–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. D’Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100

    Article  PubMed  CAS  Google Scholar 

  47. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244

    Article  CAS  PubMed  Google Scholar 

  48. Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 21:1297–1306

    Article  CAS  PubMed  Google Scholar 

  49. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508

    Article  CAS  PubMed  Google Scholar 

  50. Lindsay R, Cosman F (2012) Osteoporosis. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J (eds) Harrison’s principles of internal medicine, vol 2, 18th edn. McGraw-Hill, New York, pp 3121–3124

    Google Scholar 

  51. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, Nevitt MC, Suryawanshi S, Cummings SR, Fracture Intervention Trial (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT research group. J Clin Endocrinol Metab 85:4118–4124

    Article  CAS  PubMed  Google Scholar 

  52. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly Zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  53. Lippuner K (2012) The future of osteoporosis treatment—a research update. Swiss Med Wkly 142:w13624

    PubMed  Google Scholar 

  54. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M, American Society for Bone and Mineral Research (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294

    Article  PubMed  Google Scholar 

  55. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E, American Society of Bone and Mineral Research (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  56. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    Article  CAS  PubMed  Google Scholar 

  57. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  58. Cauley JA, Robbins J, Chen Z, Cummings SR, Jackson RD, LaCroix AZ, LeBoff M, Lewis CE, McGowan J, Neuner J, Pettinger M, Stefanick ML, Wactawski-Wende J, Watts NB, Women’s Health Initiative Investigators (2003) Effects of estrogen plus progestin on risk of fracture and bone mineral density: the women’s health initiative randomized trial. JAMA 290:1729–1738

    Article  CAS  PubMed  Google Scholar 

  59. McDonnell DP (2003) Mining the complexities of the estrogen signaling pathways for novel therapeutics. Endocrinology 144:4237–4240

    Article  CAS  PubMed  Google Scholar 

  60. Dickler MN, Norton L (2001) The MORE trial: multiple outcomes for raloxifene evaluation. Breast cancer as a secondary end point: implications for prevention. Ann N Y Acad Sci 949:134–142

    Article  CAS  PubMed  Google Scholar 

  61. Seeman E, Crans GG, Diez-Perez A, Pinette KV, Delmas PD (2006) Anti vertebral fracture efficacy of raloxifene: a meta-analysis. Osteoporos Int 17:313–316

    Article  PubMed  Google Scholar 

  62. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Gluer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR, for the Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. Results from a 3-year randomized clinical trial. JAMA 282:637–645

    Article  CAS  PubMed  Google Scholar 

  63. Agnusdei D, Iori N (2001) Raloxifene: results from the MORE study. J Musculoskelet Neuron Interact 1:127–132

    Google Scholar 

  64. Bachmann G, Kriegman A, Goncalves J, Kianifard F, Warren M, Simon JA (2011) Effect of Zoledronic acid compared with raloxifene on bone turnover markers in postmenopausal women with low bone density. Menopause 18:851–856

    Article  PubMed  Google Scholar 

  65. Lin T, Yan SG, Cai XZ, Ying ZM, Yuan FZ, Zuo X (2014) Alendronate versus raloxifene for postmenopausal women: a meta-analysis of seven head to head randomized controlled trials. Int J Endocrinol 2014:1–16. Article ID 796510. doi:10.1155/2014/796510

  66. Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, Kornitzer M, McNabb MA, Wenger NK, Raloxifene Use for The Heart (RUTH) Trial Investigators (2006) Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med 355:125–137

    Article  CAS  PubMed  Google Scholar 

  67. Cummings SR, Ensrud K, Delmas PD, LaCroix AZ, Vukicevic S, Reid DM, Goldstein S, Sriram U, Lee A, Thompson J, Armstrong RA, Thompson DD, Powles T, Zanchetta J, Kendler D, Neven P, Eastell R, PEARL Study Investigators (2010) Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med 362:686–696

    Article  CAS  PubMed  Google Scholar 

  68. Rizzoli R, Yasothan U, Kirkpatrick P (2010) Denosumab. Nat Rev Drug Discov 9:591–592

    Article  CAS  PubMed  Google Scholar 

  69. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, FREEDOM Trial (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  70. Boonen S, Adachi JD, Man Z, Cummings SR, Lippuner K, Torring O, Gallagher JC, Farrerons J, Wang A, Franchimont N, San Martin J, Grauer A, McClung M (2011) Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 96:1727–1736

    Article  CAS  PubMed  Google Scholar 

  71. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, Fan M, Jun S (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26:4875–4882

    Article  CAS  PubMed  Google Scholar 

  72. Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C, Denosumab HALT Prostate Cancer Study Group (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Lyles KW, Colon-Emeric CS, Magaziner IS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 18:1799–1809

    Article  Google Scholar 

  74. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, San Martin J, Bone HG (2009) Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24:153–161

    Article  CAS  PubMed  Google Scholar 

  75. Kendler DL, Roux C, Benhamou CL, Brown JP, Lillestol M, Siddhanti S, Man HS, San Martin J, Bone HG (2010) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25:72–81

    Article  CAS  PubMed  Google Scholar 

  76. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M, Bilynskyy B, Charu V, Beuzeboc P, Rader M, Viniegra M, Saad F, Ke C, Braun A, Jun S (2012) Superiority of denosumab to Zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomized, phase 3 trials. Eur J Cancer 48:3082–3092

    Article  CAS  PubMed  Google Scholar 

  77. Prescribing information of XGEVA (denosumab) approved by the FDA. Last revision 06/2013. Available under http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125320s094lbl.pdf

  78. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ, AMG 162 Bone Loss Study Group (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  CAS  PubMed  Google Scholar 

  79. Aghaloo TL, Felsenfeld AL, Tetradis S (2010) Osteonecrosis of the jaw in a patient on Denosumab. J Oral Maxillofac Surg 68:959–963

    Article  PubMed Central  PubMed  Google Scholar 

  80. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, Liu Y, San Martin J, Amg Bone Loss Study Group (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43:222–229

    Article  CAS  PubMed  Google Scholar 

  81. Rachner TD, Khosla S, Hofbauer LC (2011) New horizons in osteoporosis. Lancet 377:1276–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Sikon A, Batur P (2010) Profile of teriparatide in the management of postmenopausal osteoporosis. Int J Womens Health 2:37–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mellstrom D, Oefjord ES, Marcinowska-Suchowierska E, Salmi J, Mulder H, Halse J, Sawicki AZ, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  84. Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rehman Q, Lang TF, Arnaud CD, Modin GW, Lane NE (2003) Daily treatment with parathyroid hormone is associated with an increase in vertebral cross-sectional area in postmenopausal women with glucocorticoid-induced osteoporosis. Osteoporos Int 14:77–81

    Article  CAS  PubMed  Google Scholar 

  86. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, Dore RK, Correa-Rotter R, Papaioannou A, Cumming DC, Hodsman AB (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:4528–4535

    Article  CAS  PubMed  Google Scholar 

  87. Hwang JS, Tu ST, Yang TS, Chen JF, Wang CJ, Tsai KS (2006) Teriparatide vs. calcitonin in the treatment of Asian postmenopausal women with established osteoporosis. Osteoporos Int 17:373–378

    Article  CAS  PubMed  Google Scholar 

  88. Recker RR, Marin F, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Peña MP, Kekow J, Farrerons J, Sanz B, Oertel H, Stepan J (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24:1358–1368

    Article  CAS  PubMed  Google Scholar 

  89. Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, Wagman RB (2005) Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 20:962–970

    Article  CAS  PubMed  Google Scholar 

  90. Boonen S, Marin F, Obermayer-Pietsch B, Simões ME, Barker C, Glass EV, Hadji P, Lyritis G, Oertel H, Nickelsen T, McCloskey EV, EUROFORS Investigators (2008) Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in 30 postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93:852–860

    Article  CAS  PubMed  Google Scholar 

  91. Ma YL, Bryant HU, Zeng Q, Schmidt A, Hoover J, Cole HW, Yao W, Jee WS, Sato M (2003) New bone formation with teriparatide [human PTH (1-34)] is not retarded by long term pretreatment with alendronate, estrogen or raloxifene in ovariectomized rats. Endocrinology 144:2008–2015

    Article  CAS  PubMed  Google Scholar 

  92. Ettinger B, San Martin J, Crans G, Pavo I (2004) Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res 19:745–751

    Article  CAS  PubMed  Google Scholar 

  93. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ, PaTH Study Investigators (2003) The effects of parathyroid hormone, and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  CAS  PubMed  Google Scholar 

  94. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  CAS  PubMed  Google Scholar 

  95. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman R, Mc Kay EA, Burnett-Bowie SA, Neer RM, Leder BZ (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomized trial. Lancet 382(9886):50–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Lindsay R, Nieves J, Formica C, Henneman E, Woelfert L, Shen V, Dempster D, Cosman F (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350:550–555

    Article  CAS  PubMed  Google Scholar 

  97. Cosman F, Nieves J, Woelfert L, Formica C, Gordon S, Shen V, Lindsay R (2001) Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res 16:925–931

    Article  CAS  PubMed  Google Scholar 

  98. Prince R, Sipos A, Hossain A, Syversen U, Ish-Shalom S, Marcinowska E, Halse J, Lindsay R, Dalsky GP, Mitlak BH (2005) Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20:1507–1513

    Article  CAS  PubMed  Google Scholar 

  99. Adami S, San Martin J, Muñoz-Torres M, Econs MJ, Xie L, Dalsky GP, McClung M, Felsenberg D, Brown JP, Brandi ML, A Sipos (2008) Effect of raloxifene after recombinant teriparatide [hPTH (1-34)] treatment in post-menopausal women with osteoporosis. Osteoporos Int 19:87–94

    Article  CAS  PubMed  Google Scholar 

  100. Minne H, Audran M, Simões ME, Obermayer-Pietsch B, Sigurðsson G, Marín F, Dalsky GP, Nickelsen T, EUROFORS Study Group (2008) Bone density after teriparatide in patients with or without prior antiresorptive treatment: one-year results from EUROFORS study. Curr Med Res Opin 24:3117–3128

    Article  CAS  PubMed  Google Scholar 

  101. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, Westmore MS, Linda Y, Nold JB (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone(1-34) for two years and relevance to human safety. Toxicol Pathol 30:312–321

    Article  CAS  PubMed  Google Scholar 

  102. Harper KD, Krege JH, Marcus R, Mitlak BH (2007) Osteosarcoma and teriparatide? J Bone Miner Res 22:334

    Article  PubMed  Google Scholar 

  103. Gauthier JY, Chauret N, Cromlish W, Desmarais S, le Duong T, Falgueyret JP, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18:923–928

    Article  CAS  PubMed  Google Scholar 

  104. Peroni A, Zini A, Braga V, Colato C, Adami S, Girolomoni G (2008) Drug-induced morphea: report of a case induced by balicatib and review of the literature. J Am Acad Dermatol 59:125–129

    Article  PubMed  Google Scholar 

  105. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA (2010) Odanacatib, a cathepsin K inhibitor for osteoporosis: a two year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947

    PubMed  Google Scholar 

  106. Eastell R, Nagase S, Ohyama M, Small M, Sawyer J, Boonen S, Spector T, Kuwayama T, Deacon S (2011) Safety and efficacy of cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res 26:1303–1312

    Article  CAS  PubMed  Google Scholar 

  107. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588

    Article  CAS  PubMed  Google Scholar 

  108. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single dose placebo controlled randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    Article  CAS  PubMed  Google Scholar 

  109. Anastasilakis AD, Polyzos SA, Gkiomisi A, Bisbinas I, Gerou S, Makras P (2013) Comparative effect of zoledronic acid versus denosumab on serum sclerostin and dickkopf-1 levels of naïve postmenopausal women with low bone mass :a randomized, head-to-head clinical trial. J Clin Endocrinol Metab 98(8):3206–3212

    Article  CAS  PubMed  Google Scholar 

  110. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    CAS  PubMed  Google Scholar 

  111. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB, Thomas DM (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119:837–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  CAS  PubMed  Google Scholar 

  113. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24:425–436

    Article  CAS  PubMed  Google Scholar 

  114. Seaman E, Vellas B, Benhamou C, Aquino JP et al (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120

    Article  Google Scholar 

  115. Hampson G, Fogelman I (2012) Clinical role of bisphosphonates. Int J Women Health 4:455–469

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hampson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishtiaq, S., Fogelman, I. & Hampson, G. Treatment of post-menopausal osteoporosis: beyond bisphosphonates. J Endocrinol Invest 38, 13–29 (2015). https://doi.org/10.1007/s40618-014-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0152-z

Keywords

Navigation