Skip to main content

Advertisement

Log in

Effects of sex hormones on inflammatory response in male and female vascular endothelial cells

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Gender-related differences in sex hormones might have a key role in the development of atherosclerosis though direct vascular effects of sex hormones are not yet well understood. Thus, the main purpose of this study was to compare the effects of sex hormones on inflammatory response in Human Umbilical Vein Endothelial Cells (HUVECs) obtained from both male and female donors.

Methods

We analyzed the expression of receptors and enzymes relevant to the action of androgens (AR, 5α-reductase 1 and 5α-reductase 2) and estrogens (ERα, ERβ, and aromatase) in male and female HUVECs. Furthermore, we analyzed the effect of testosterone (T), 17β-estradiol (E2), dihydrotestosterone (DHT), and several androgenic-anabolic steroids (AAS) on VCAM-1, ICAM-1, and E-selectin gene expression and on adhesion of U937 cells to TNF-α-stimulated male and female HUVECs.

Results

Our results reveal that in HUVECs, regardless of gender, the components involved in the androgen action pathway are predominant as compared to those of estrogen action pathway. In both HUVEC genders, the inflammatory effect of TNF-α was amplified by co-administration of T or DHT and several AAS frequently used in doping, while E2 had no effect.

Conclusions

This is the first study analyzing, under identical culture conditions, the key components of sex hormone response in male and female HUVECs and the possible role of sex hormones in regulating the endothelial inflammatory response. The data obtained in our experimental system showed a pro-inflammatory effect of androgens, while conclusively excluding any protective effect for all the tested hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu FC, von Eckardstein A (2003) Androgens and coronary artery disease. Endocr Rev 24(2):183–217

    Article  CAS  PubMed  Google Scholar 

  2. Jones TH, Saad F (2009) The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process. Atherosclerosis 207(2):318–327

    Article  CAS  PubMed  Google Scholar 

  3. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee TK, Dinh H, Chaudhuri G, Nathan L (2002) Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci USA 99(6):4055–4060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang X, Wang LY, Jiang TY, Zhang HP, Dou Y, Zhao JH, Zhao H, Qiao ZD, Qiao JT (2002) Effects of testosterone and 17-beta-estradiol on TNF-alpha-induced E-selectin and VCAM-1 expression in endothelial cells. Analysis of the underlying receptor pathways. Life Sci 71(1):15–29

    Article  CAS  PubMed  Google Scholar 

  6. Murphy HS, Sun Q, Murphy BA, Mo R, Huo J, Chen J, Chensue SW, Adams M, Richardson BC, Yung R (2004) Tissue-specific effect of estradiol on endothelial cell-dependent lymphocyte recruitment. Microvasc Res 68(3):273–285

    Article  CAS  PubMed  Google Scholar 

  7. McCrohon JA, Jessup W, Handelsman DJ, Celermajer DS (1999) Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1. Circulation 99(17):2317–2322

    Article  CAS  PubMed  Google Scholar 

  8. Death AK, McGrath KC, Sader MA, Nakhla S, Jessup W, Handelsman DJ, Celermajer DS (2004) Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappaB-dependent pathway. Endocrinology 145(4):1889–1897

    Article  CAS  PubMed  Google Scholar 

  9. Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL (2006) Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 91(2):546–554

    Article  CAS  PubMed  Google Scholar 

  10. Norata GD, Cattaneo P, Poletti A, Catapano AL (2010) The androgen derivative 5alpha-androstane-3beta, 17beta-diol inhibits tumor necrosis factor alpha and lipopolysaccharide induced inflammatory response in human endothelial cells and in mice aorta. Atherosclerosis 212(1):100–106

    Article  CAS  PubMed  Google Scholar 

  11. Vitale C, Mendelsohn ME, Rosano GM (2009) Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol 6(8):532–542

    Article  CAS  PubMed  Google Scholar 

  12. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43(4):985–991

    Article  CAS  PubMed  Google Scholar 

  13. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ (2000) Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res 46(1):172–179

    Article  CAS  PubMed  Google Scholar 

  14. Ihionkhan CE, Chambliss KL, Gibson LL, Hahner LD, Mendelsohn ME, Shaul PW (2002) Estrogen causes dynamic alterations in endothelial estrogen receptor expression. Circ Res 91(9):814–820

    Article  CAS  PubMed  Google Scholar 

  15. Haas E, Meyer MR, Schurr U, Bhattacharya I, Minotti R, Nguyen HH, Heigl A, Lachat M, Genoni M, Barton M (2007) Differential effects of 17beta-estradiol on function and expression of estrogen receptor alpha, estrogen receptor beta, and GPR30 in arteries and veins of patients with atherosclerosis. Hypertension 49(6):1358–1363

    Article  CAS  PubMed  Google Scholar 

  16. Caulin-Glaser T, Watson CA, Pardi R, Bender JR (1996) Effects of 17beta-estradiol on cytokine-induced endothelial cell adhesion molecule expression. J Clin Invest 98(1):36–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Akane A (1998) Sex determination by PCR analysis of the X–Y amelogenin gene. Methods Mol Biol 98:245–249

    CAS  PubMed  Google Scholar 

  18. Evans MJ, Harris HA, Miller CP, Karathanasis SK, Adelman SJ (2002) Estrogen receptors alpha and beta have similar activities in multiple endothelial cell pathways. Endocrinology 143(10):3785–3795

    Article  CAS  PubMed  Google Scholar 

  19. Toth B, Saadat G, Geller A, Scholz C, Schulze S, Friese K, Jeschke U (2008) Human umbilical vascular endothelial cells express estrogen receptor beta (ERbeta) and progesterone receptor A (PR-A), but not ERalpha and PR-B. Histochem Cell Biol 130(2):399–405

    Article  CAS  PubMed  Google Scholar 

  20. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308(5728):1583–1587

    Article  CAS  PubMed  Google Scholar 

  21. Virdis A, Ghiadoni L, Pinto S, Lombardo M, Petraglia F, Gennazzani A, Buralli S, Taddei S, Salvetti A (2000) Mechanisms responsible for endothelial dysfunction associated with acute estrogen deprivation in normotensive women. Circulation 101(19):2258–2263

    Article  CAS  PubMed  Google Scholar 

  22. Mori M, Tsukahara F, Yoshioka T, Irie K, Ohta H (2004) Suppression by 17beta-estradiol of monocyte adhesion to vascular endothelial cells is mediated by estrogen receptors. Life Sci 75(5):599–609

    Article  CAS  PubMed  Google Scholar 

  23. Weihua Z, Lathe R, Warner M, Gustafsson JA (2002) An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta, 17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci USA 99(21):13589–13594

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A, Martini PG, Katzenellenbogen BS, Martini L, Motta M, Poletti A (2005) The androgen derivative 5alpha-androstane-3beta, 17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res 65(12):5445–5453

    Article  CAS  PubMed  Google Scholar 

  25. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C (2009) Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. Steroids 74(2):172–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “Commissione per la vigilanza ed il controllo sul doping”, Italian Ministry of Health. We would like to thank GlaxoSmithKline which provided valuable reagents and Dr. Laura Guerra for linguistic help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giosuè Annibalini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annibalini, G., Agostini, D., Calcabrini, C. et al. Effects of sex hormones on inflammatory response in male and female vascular endothelial cells. J Endocrinol Invest 37, 861–869 (2014). https://doi.org/10.1007/s40618-014-0118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0118-1

Keywords

Navigation