Skip to main content

Advertisement

Log in

Recent Advances in Retinal Stem Cell Therapy

  • Molecular Biotechnology of Adult Stem Cells (G Stein, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and, soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye.

Recent Findings

Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo.

Summary

While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004;48(8–9):1003–14. doi:10.1387/ijdb.041870am.

    Article  PubMed  Google Scholar 

  2. MacLaren RE, Pearson RA. Stem cell therapy and the retina. Eye. 2007;21(10):1352–9. doi:10.1038/sj.eye.6702842.

    Article  CAS  PubMed  Google Scholar 

  3. Mellough CB, Steel DH, Lako M. Genetic basis of inherited macular dystrophies and implications for stem cell therapy. Stem Cells. 2009;27(11):2833–45. doi:10.1002/stem.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci. 2011;278(1721):3009–16. doi:10.1098/rspb.2011.1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development. 2013;140(12):2576–85. doi:10.1242/dev.092270. This comprehensive review is focused on the various stem-cell based approaches for treating retinal diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. •• Reardon S, Cyranoski D. Japan stem-cell trial stirs envy. Nature. 2014;513(7518):287–8. doi:10.1038/513287a. This review article highlighted Japan's regulatory authorities allowing a clinical study of iPS cells for the treatment of age-related macular degeneration at the RIKEN Center for Developmental Biology.

    Article  CAS  PubMed  Google Scholar 

  7. •• Ameri K, Samurkashian R, Yeghiazarians Y. Three-dimensional bioprinting: emerging technology in cardiovascular medicine. Circulation. 2017;135(14):1281–3. doi:10.1161/CIRCULATIONAHA.116.024945. This review article discussed the revolutionary use of 3-dimensional bioprinting (using bioink composed of cells and structural scaffolds) for stem cell therapy in cardiovascular medicine.

    Article  PubMed  Google Scholar 

  8. Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun. 2000;270(2):517–21. doi:10.1006/bbrc.2000.2473.

    Article  CAS  PubMed  Google Scholar 

  9. Haruta M, Kosaka M, Kanegae Y, Saito I, Inoue T, Kageyama R, et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci. 2001;4(12):1163–4. doi:10.1038/nn762.

    Article  CAS  PubMed  Google Scholar 

  10. Chacko DM, Das AV, Zhao X, James J, Bhattacharya S, Ahmad I. Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina. Vis Res. 2003;43(8):937–46.

    Article  PubMed  Google Scholar 

  11. Braisted JE, Raymond PA. Regeneration of dopaminergic neurons in goldfish retina. Development. 1992;114(4):913–9.

    CAS  PubMed  Google Scholar 

  12. Wu DM, Schneiderman T, Burgett J, Gokhale P, Barthel L, Raymond PA. Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. Invest Ophthalmol Vis Sci. 2001;42(9):2115–24.

    CAS  PubMed  Google Scholar 

  13. Cameron DA, Gentile KL, Middleton FA, Yurco P. Gene expression profiles of intact and regenerating zebrafish retina. Mol Vis. 2005;11:775–91.

    CAS  PubMed  Google Scholar 

  14. Ghosh S, Hui SP. Regeneration of zebrafish CNS: adult neurogenesis. Neural Plasticity. 2016;2016:5815439. doi:10.1155/2016/5815439.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Powell C, Grant AR, Cornblath E, Goldman D. Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci U S A. 2013;110(49):19814–9. doi:10.1073/pnas.1312009110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, et al. Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423–51. doi:10.1016/j.preteyeres.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  17. Goldman D. Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15(7):431–42. doi:10.1038/nrn3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol. 2010;12(11):1101–7. doi:10.1038/ncb2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A. 2004;101(50):17528–32. doi:10.1073/pnas.0407893101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sottile V, Li M, Scotting PJ. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res. 2006;1099(1):8–17. doi:10.1016/j.brainres.2006.04.127.

    Article  CAS  PubMed  Google Scholar 

  21. Bhatia B, Singhal S, Jayaram H, Khaw PT, Limb GA. Adult retinal stem cells revisited. Open Ophthalmol J. 2010;4:30–8. doi:10.2174/1874364101004010030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, et al. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells. 2007;25(8):2033–43. doi:10.1634/stemcells.2006-0724.

    Article  CAS  PubMed  Google Scholar 

  23. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000;287(5460):2032–6.

    Article  CAS  PubMed  Google Scholar 

  24. Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LM, et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A. 2009;106(16):6685–90. doi:10.1073/pnas.0901596106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi M, Palmer TD, Takahashi J, Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci. 1998;12(6):340–8. doi:10.1006/mcne.1998.0721.

    Article  CAS  PubMed  Google Scholar 

  26. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci. 2000;16(3):197–205. doi:10.1006/mcne.2000.0869.

    Article  CAS  PubMed  Google Scholar 

  27. • Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nature reviews. Mol Cell Biol. 2016;17(3):194–200. doi:10.1038/nrm.2016.10. This review article emphasized the need for gathering additional data demonstrating the function and mechanisms of action of pluripotent stem cells in treating a range of eye diseases including age-related macular degeneration, Stargardt disease, and myopic macular degeneration.

    CAS  Google Scholar 

  28. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43. doi:10.2217/rme.09.74.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeon S, Oh IH. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases. BMB Rep. 2015;48(4):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  31. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004;7(9):1003–9. doi:10.1038/nn1301.

    Article  CAS  PubMed  Google Scholar 

  32. Hirano M, Yamamoto A, Yoshimura N, Tokunaga T, Motohashi T, Ishizaki K, et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn: Off Publ Am Assoc Anatomists. 2003;228(4):664–71. doi:10.1002/dvdy.10425.

    Article  Google Scholar 

  33. Hemmati-Brivanlou A, Melton D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell. 1997;88(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103(34):12769–74. doi:10.1073/pnas.0601990103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tabata Y, Ouchi Y, Kamiya H, Manabe T, Arai K, Watanabe S. Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene. Mol Cell Biol. 2004;24(10):4513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sugie Y, Yoshikawa M, Ouji Y, Saito K, Moriya K, Ishizaka S, et al. Photoreceptor cells from mouse ES cells by co-culture with chick embryonic retina. Biochem Biophys Res Commun. 2005;332(1):241–7. doi:10.1016/j.bbrc.2005.04.125.

    Article  CAS  PubMed  Google Scholar 

  37. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4(1):73–9. doi:10.1016/j.stem.2008.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol. 2006;24(3):344–50. doi:10.1038/nbt1189.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer JS, Katz ML, Maruniak JA, Kirk MD. Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells. 2006;24(2):274–83. doi:10.1634/stemcells.2005-0059.

    Article  PubMed  Google Scholar 

  40. Jagatha B, Divya MS, Sanalkumar R, Indulekha CL, Vidyanand S, Divya TS, et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun. 2009;380(2):230–5. doi:10.1016/j.bbrc.2009.01.038.

    Article  CAS  PubMed  Google Scholar 

  41. Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells. 2012;30(4):673–86. doi:10.1002/stem.1037.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206–18. doi:10.1002/stem.674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu D, Deng X, Spee C, Sonoda S, Hsieh CL, Barron E, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci. 2011;52(3):1573–85. doi:10.1167/iovs.10-6413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc. 2011;7(1):69–79. doi:10.1038/nprot.2011.429.

    Article  PubMed  CAS  Google Scholar 

  45. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85. doi:10.1016/j.stem.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  46. Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61. doi:10.1016/j.expneurol.2008.09.007.

    Article  CAS  PubMed  Google Scholar 

  47. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106(39):16698–703. doi:10.1073/pnas.0905245106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102(32):11331–6. doi:10.1073/pnas.0500010102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408. doi:10.1016/j.stem.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  50. Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis. 2009;15:283–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27(9):2126–35. doi:10.1002/stem.149.

    Article  CAS  PubMed  Google Scholar 

  52. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning and Stem Cells. 2006;8(3):189–99. doi:10.1089/clo.2006.8.189.

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. doi:10.1016/S0140-6736(12)60028-2.

    Article  CAS  PubMed  Google Scholar 

  54. Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci. 2013;36(7):385–95. doi:10.1016/j.tins.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  55. •• Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. doi:10.1056/NEJMoa1608368. This paper assessed the feasibility of transplanting RPE cells differentiated from induced pluripotent cells in a patient with neovascular AMD, and showed that after 1 year of surgery, the transplanted RPE sheet remained intact and visual acuity had not improved or worsened.

    Article  PubMed  Google Scholar 

  56. Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch Ophthalmol. 2004;122(8):1159–65. doi:10.1001/archopht.122.8.1159.

    Article  PubMed  Google Scholar 

  57. Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103. doi:10.1038/nature10997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McGill TJ, Cottam B, Lu B, Wang S, Girman S, Tian C, et al. Transplantation of human central nervous system stem cells—neuroprotection in retinal degeneration. Eur J Neurosci. 2012;35(3):468–77. doi:10.1111/j.1460-9568.2011.07970.x.

    Article  PubMed  Google Scholar 

  59. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.

    Article  PubMed  Google Scholar 

  60. Laroni A, Novi G, Kerlero de Rosbo N, Uccelli A. Towards clinical application of mesenchymal stem cells for treatment of neurological diseases of the central nervous system. J Neuroimmune Pharmacol: Off J Soc NeuroImmune Pharmacol. 2013;8(5):1062–76. doi:10.1007/s11481-013-9456-6.

    Article  Google Scholar 

  61. • Rajashekhar G. Mesenchymal stem cells: new players in retinopathy therapy. Frontiers in endocrinology. 2014;5:59. doi:10.3389/fendo.2014.00059. This review paper discussed the feasibility of using readily available adipose stromal cells (ASC) from liposuction for treating patients with retinal diseases.

  62. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  63. Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Current opinion in organ transplantation. 2010;15(1):86–91. doi:10.1097/MOT.0b013e328334f074.

    Article  PubMed  Google Scholar 

  64. Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011;3(4):25–33. doi:10.4252/wjsc.v3.i4.25.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vossmerbaeumer U, Ohnesorge S, Kuehl S, Haapalahti M, Kluter H, Jonas JB, et al. Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy. 2009;11(2):177–88. doi:10.1080/14653240802714819.

    Article  CAS  PubMed  Google Scholar 

  66. Jin W, Xing YQ, Yang AH. Epidermal growth factor promotes the differentiation of stem cells derived from human umbilical cord blood into neuron-like cells via taurine induction in vitro. In Vitro Cell Dev Biol Anim. 2009;45(7):321–7. doi:10.1007/s11626-009-9184-7.

    Article  CAS  PubMed  Google Scholar 

  67. Moviglia GA, Blasetti N, Zarate JO, Pelayes DE. In vitro differentiation of adult adipose mesenchymal stem cells into retinal progenitor cells. Ophthalmic Res. 2012;48(Suppl 1):1–5. doi:10.1159/000339839.

    Article  CAS  PubMed  Google Scholar 

  68. • Bray AF, Cevallos RR, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience. 2014;280:142–55. doi:10.1016/j.neuroscience.2014.09.023. This study demonstrated that human adult dental pulp stem cells respond to conditional media from rat retinal organotypic explants and differentiate to express a mature photoreceptor marker, rhodopsin.

    Article  CAS  PubMed  Google Scholar 

  69. Singh AK, Srivastava GK, Garcia-Gutierrez MT, Pastor JC. Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition. Histol Histopathol. 2013;28(12):1577–83. doi:10.14670/HH-28.1577.

    CAS  PubMed  Google Scholar 

  70. Rodriguez-Crespo D, Di Lauro S, Singh AK, Garcia-Gutierrez MT, Garrosa M, Pastor JC, et al. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 2014;358(3):705–16. doi:10.1007/s00441-014-1987-5.

    Article  CAS  PubMed  Google Scholar 

  71. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res. 2007;85(2):234–41. doi:10.1016/j.exer.2007.04.007.

    Article  CAS  PubMed  Google Scholar 

  72. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25(3):602–11. doi:10.1634/stemcells.2006-0308.

    Article  CAS  PubMed  Google Scholar 

  73. • Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, et al. Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014;3(3):323–33. doi:10.5966/sctm.2013-0112. This paper showed that human mesenchymal stem cells can be regarded as a potential cell source for treating human photoreceptor degenerations and offer the possibility for the development of autologous transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15(2):387–94. doi:10.1016/j.scr.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  75. Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, et al. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One. 2010;5(2):e9200. doi:10.1371/journal.pone.0009200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. •• Bakondi B, Girman S, Lu B, Wang S. Multimodal delivery of isogenic mesenchymal stem cells yields synergistic protection from retinal degeneration and vision loss. Stem Cells Transl Med. 2017;6(2):444–57. doi:10.5966/sctm.2016-0181. This paper reported that MSC-mediated retinal protection differ by administration route (intravenous versus intravitreal) and synergize when combined, in the RCS rat model. Data from this study showed that MSCs provide trophic support of visual function in vivo .

    Article  CAS  PubMed  Google Scholar 

  77. Newell KA. Clinical transplantation tolerance. Semin Immunopathol. 2011;33(2):91–104. doi:10.1007/s00281-011-0255-y.

    Article  PubMed  Google Scholar 

  78. Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain : J Neurol. 2014;137(Pt 2):503–19. doi:10.1093/brain/awt292.

    Article  Google Scholar 

  79. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One. 2014;9(10):e109305. doi:10.1371/journal.pone.0109305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tsuruma K, Yamauchi M, Sugitani S, Otsuka T, Ohno Y, Nagahara Y, et al. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration. Stem Cells Transl Med. 2014;3(1):42–53. doi:10.5966/sctm.2013-0020.

    Article  CAS  PubMed  Google Scholar 

  81. • Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep. 2016;6:34562–10.1038/srep34562. This study showed that intravitreally injected MSCs from either mouse adipose tissue or human umbilical cord, and their exosomes, reduced laser-induced retinal damage through inhibition of apoptosis and suppression of inflammatory responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: a road towards personalized artificial tissue. Current Stem Cell Reports. 2015;1(2):79–91. doi:10.1007/s40778-015-0014-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Soleimannejad M, Ebrahimi-Barough S, Nadri S, Riazi-Esfahani M, Soleimani M, Tavangar SM, et al. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: hypotheses on novel approach to retinal diseases treatment. Med Hypotheses. 2017;101:75–7. doi:10.1016/j.mehy.2017.02.019. This paper provided a novel 3D-scaffold approach for differentiation of conjunctiva mesenchymal stem cells into photoreceptors in fibrin gel with induction medium containing taurine.

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  85. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. doi:10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

  86. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B, Phys Biol Sci. 2009;85(8):348–62.

    Article  CAS  Google Scholar 

  87. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6. doi:10.1016/j.stem.2009.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30. doi:10.1016/j.stem.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458(3):126–31. doi:10.1016/j.neulet.2009.04.035.

    Article  CAS  PubMed  Google Scholar 

  90. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427–34. doi:10.1002/stem.189.

    Article  CAS  PubMed  Google Scholar 

  91. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4(12):e8152. doi:10.1371/journal.pone.0008152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liao JL, Yu J, Huang K, Hu J, Diemer T, Ma Z, et al. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet. 2010;19(21):4229–38. doi:10.1093/hmg/ddq341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169–79. doi:10.1242/jcs.050393.

    Article  CAS  PubMed  Google Scholar 

  94. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5(1):e8763. doi:10.1371/journal.pone.0008763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. • Tanaka T, Yokoi T, Tamalu F, Watanabe S, Nishina S, Azuma N. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:8344. doi:10.1038/srep08344. This study showed that combining 3D suspension culture of iPSCs followed by a period of 2D adhesive culture in the presence of retinal differentiation and maturation culture medium resulted in axonal elongation of RGCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Riazifar H, Jia Y, Chen J, Lynch G, Huang T. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med. 2014;3(4):424–32. doi:10.5966/sctm.2013-0147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamada Y, Haga H, Yamada Y. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med. 2014;3(10):1182–7. doi:10.5966/sctm.2014-0090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170–82. doi:10.1038/nrm.2015.27.

    Article  CAS  PubMed  Google Scholar 

  99. •• Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov. 2015;14(10):681–92. doi:10.1038/nrd4738. This review article summarized the timeline of the key dates in the development of pluripotent stem cell-based therapies for AMD, and outlines the ongoing clinical trials for treating AMD using hESC and iPSC-derived RPE.

    Article  CAS  PubMed  Google Scholar 

  100. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 2011;29(12):1117–9. doi:10.1038/nbt.2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13(5):541–9. doi:10.1038/ncb2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev. 2012;21(13):2364–73. doi:10.1089/scd.2012.0088.

    Article  CAS  PubMed  Google Scholar 

  103. • Fabre KM, Livingston C, Tagle DA. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue. Exp Biol Med. 2014;239(9):1073–7. doi:10.1177/1535370214538916. This important review highlighted the development of 3-dimensional organ systems from human cells on bioengineered platforms that mimic in vivo tissue architecture and physiological conditions. This approach can monitor key organ-level functions in response to stem cell transplantation and is an innovative tool in translational science.

    Article  CAS  Google Scholar 

  104. • Tucker BA, Solivan-Timpe F, Roos BR, Anfinson KR, Robin AL, Wiley LA, et al. Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J Stem Cell Res Ther. 2014;3(5):161–10.4172/2157-7633.1000161. The authors reported the development and characterization of iPSC and retinal ganglion cell-like neurons from unaffected controls and normotensive glaucoma (NTG) patients with TBK1 gene duplications to investigate the role of autophagy in the pathogenesis of NTG.

    PubMed  PubMed Central  Google Scholar 

  105. Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W, et al. The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain. 2014;7:45. doi:10.1186/1756-6606-7-45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):1350–3. doi:10.1038/ng.471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–7. doi:10.1038/nature09805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells. 2011;29(5):825–35. doi:10.1002/stem.635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circ. 2014;8:108. doi:10.3389/fncir.2014.00108.

    Google Scholar 

  110. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS. Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci. 2003;44(1):426–34.

    Article  PubMed  Google Scholar 

  111. • Casaroli-Marano RP, Nieto-Nicolau N, Martinez-Conesa EM, Edel M, Alvarez-Palomo A. Potential role of induced pluripotent stem cells (IPSCs) for cell-based therapy of the ocular surface. J Clin Med. 2015;4(2):318–42. doi:10.3390/jcm4020318. The review article highlighted the emerging roles of autologous mesenchymal and iPSCs for ocular surface reconstruction.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A, et al. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol. 2011;95(3):370–5. doi:10.1136/bjo.2009.176305.

    Article  PubMed  Google Scholar 

  113. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103(10):3896–901. doi:10.1073/pnas.0600236103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zarbin MA. Analysis of retinal pigment epithelium integrin expression and adhesion to aged submacular human Bruch's membrane. Trans Am Ophthalmol Soc. 2003;101:499–520.

    PubMed  PubMed Central  Google Scholar 

  115. Tsukahara I, Ninomiya S, Castellarin A, Yagi F, Sugino IK, Zarbin MA. Early attachment of uncultured retinal pigment epithelium from aged donors onto Bruch’s membrane explants. Exp Eye Res. 2002;74(2):255–66. doi:10.1006/exer.2001.1123.

    Article  CAS  PubMed  Google Scholar 

  116. Tezel TH, Del Priore LV, Kaplan HJ. Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci. 2004;45(9):3337–48. doi:10.1167/iovs.04-0193.

    Article  PubMed  Google Scholar 

  117. Jayagopal A, Russ PK, Haselton FR. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem. 2007;18(5):1424–33. doi:10.1021/bc070020r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jayagopal A, Su YR, Blakemore JL, Linton MF, Fazio S, Haselton FR. Quantum dot mediated imaging of atherosclerosis. Nanotechnology. 2009;20(16):165102. doi:10.1088/0957-4484/20/16/165102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Barnett JM, Penn JS, Jayagopal A. Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Methods Mol Biol. 2013;1026:45–56. doi:10.1007/978-1-62703-468-5_4.

    Article  CAS  PubMed  Google Scholar 

  120. •• Kilian T, Fidler F, Kasten A, Nietzer S, Landgraf V, Weiss K, et al. Stem cell labeling with iron oxide nanoparticles: impact of 3D culture on cell labeling maintenance. Nanomedicine. 2016;11(15):1957–70. doi:10.2217/nnm-2016-0042. This paper demonstrated that M4E nanoparticle labeling of human MSCs could serve as a graft for regenerative therapies.

    Article  CAS  PubMed  Google Scholar 

  121. • Nicholls FJ, Liu JR, Modo M. A comparison of exogenous labels for the histological identification of transplanted neural stem cells. Cell Transplant. 2017;26(4):625–45. doi:10.3727/096368916X693680. This paper showed that Hoechst 3342 is unreliable, whereas PKH26 and Q tracker are reliable labels for the identification of transplanted cells during cell therapy, without exerting major cellular effects.

    Article  PubMed  Google Scholar 

  122. •• Santos-Ferreira TF, Borsch O, Ader M. Rebuilding the missing part-a review on photoreceptor transplantation. Frontiers in systems. Neurosci. 2016;10:105. doi:10.3389/fnsys.2016.00105. This review discussed that transplantation of iPSC/ESC and retinal organoid-derived photoreceptors as evolving replacement approaches for the treatment of late-stage AMD.

Download references

Acknowledgments

This study was supported in part by grants from the National Eye Institute (EY023427), Department of Defense (W81XWH-16-1-0778), the Shulsky Foundation (New York, NY), the Plough Foundation (Memphis, TN), the Lions of Arkansas Foundation, and an unrestricted departmental grant from Research to Prevent Blindness (New York, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Chaum.

Ethics declarations

Conflict of Interest

Sujoy Bhattacharya and Edward Chaum each declare no potential conflicts of interest.

Rajashekhar Gangaraju reports grants from the National Eye Institute, grants from the Department of Defense, during the conduct of the study, others from Cell Care Therapeutics, Inc., outside the submitted work. In addition, Dr. Gangaraju has a patent US Provisional Patent Application No. US20150377908A1 pending, and a patent US Provisional Patent Application No. 62/294,489 pending related to stem cell biology.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biotechnology of Adult Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Gangaraju, R. & Chaum, E. Recent Advances in Retinal Stem Cell Therapy. Curr Mol Bio Rep 3, 172–182 (2017). https://doi.org/10.1007/s40610-017-0069-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0069-3

Keywords

Navigation