Skip to main content
Log in

New PTH Signals Mediating Bone Anabolism

  • Molecular Biology of Skeletal Development (T Bellido, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Because of its clinical relevance, extensive work has been performed to uncover the signaling pathways modulated by parathyroid hormone (PTH). This review focuses on the recent identification of novel effectors of the anabolic effect of PTH in bone.

Recent Findings

PTH-induced activation of PKA leads to inactivation of SIK2 and nuclear translocation of HDAC4/5. This inhibits MEF2C-dependent Sost expression. However, the phenotypic characterization of the HDAC4/5 double knockout mice shows normal anabolic response to intermittent PTH, supporting the notion that HDAC/Sost-independent mechanisms must exist. Lrp6 and a member of the Usp gene family have been identified as novel targets of the transcriptional coregulator Nascent polypeptide-associated complex And Coregulator alpha (αNAC) downstream from PTH activation. We propose that the αNAC cascade is involved in the transmission of the anabolic PTH signal.

Summary

Further deciphering the signaling pathways transducing the anabolic effects of PTH will allow to develop novel therapeutically relevant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hanley DA, Watson PH, Hodsman AB, Dempster DW. Pharmacological mechanisms of therapeutics: parathyroid hormone. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. 3rd ed. San Diego: Elsevier; 2008.

    Google Scholar 

  2. Levine MA. Normal mineral homeostasis. Interplay of parathyroid hormone and vitamin D. Endocr Dev. 2003;6:14–33.

    Article  CAS  PubMed  Google Scholar 

  3. Silverberg SJ, Shane E, de la Cruz L, Dempster DW, Feldman F, Seldin D, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res. 1989;4:283–91. doi:10.1002/jbmr.5650040302.

    Article  CAS  PubMed  Google Scholar 

  4. Grey AB, Stapleton JP, Evans MC, Reid IR. Accelerated bone loss in post-menopausal women with mild primary hyperparathyroidism. Clin Endocrinol. 1996;44:697–702.

    Article  CAS  Google Scholar 

  5. Pleiner-Duxneuner J, Zwettler E, Paschalis E, Roschger P, Nell-Duxneuner V, Klaushofer K. Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int. 2009;84:159–70. doi:10.1007/s00223-009-9218-x.

    Article  CAS  PubMed  Google Scholar 

  6. Dobnig H, Turner RT. The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats. Endocrinology. 1997;138:4607–12.

    Article  CAS  PubMed  Google Scholar 

  7. Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab. 2004;15:60–5. doi:10.1016/j.tem.2004.01.006.

    Article  CAS  PubMed  Google Scholar 

  8. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41. doi:10.1056/NEJM200105103441904.

    Article  CAS  PubMed  Google Scholar 

  9. • Pellicelli M, Miller JA, Arabian A, Gauthier C, Akhouayri O, Wu JY, et al. The PTH-Gαs-protein kinase A cascade controls αNAC localization to regulate bone mass. Mol Cell Biol. 2014;34:1622–33. doi:10.1128/MCB.01434-13. Characterization of the PTH signal regulating nuclear translocation of αNAC

    Article  PubMed  PubMed Central  Google Scholar 

  10. Akhouayri O, Quelo I, St-Arnaud R. Sequence-specific DNA binding by the alphaNAC coactivator is required for potentiation of c-Jun-dependent transcription of the osteocalcin gene. Mol Cell Biol. 2005;25:3452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hekmatnejad B, Akhouayri O, Jafarov T, St-Arnaud R. SUMOylated alphaNAC potentiates transcriptional repression by FIAT. J Cell Biochem. 2014;115:866–73. doi:10.1002/jcb.24729.

    Article  CAS  PubMed  Google Scholar 

  12. • Jafarov T, Alexander JW, St-Arnaud R. alphaNAC interacts with histone deacetylase corepressors to control myogenin and osteocalcin gene expression. Biochim Biophys Acta. 2012;1819:1208–16. doi:10.1016/j.bbagrm.2012.10.005. First demonstration that αNAC can act as both a positive or a negative regulator of transcription through differential interaction with HDACs

    Article  CAS  PubMed  Google Scholar 

  13. Cheloha RW, Gellman SH, Vilardaga JP, Gardella TJ. PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat Rev Endocrinol. 2015;11:712–24. doi:10.1038/nrendo.2015.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, et al. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol. 2016;49:11–23. doi:10.1016/j.semcdb.2015.12.004.

    Article  PubMed  Google Scholar 

  15. Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest. 1999;104:399–407. doi:10.1172/JCI6629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qiu T, Xian L, Crane J, Wen C, Hilton M, Lu W, et al. PTH receptor signaling in osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J Bone Miner Res. 2015;30:309–17. doi:10.1002/jbmr.2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Powell Jr WF, Barry KJ, Tulum I, Kobayashi T, Harris SE, Bringhurst FR, et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol. 2011;209:21–32. doi:10.1530/JOE-10-0308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delgado-Calle J, Tu X, Pacheco-Costa R, McAndrews K, Edwards R, Pellegrini GG, et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor. J Bone Miner Res. 2016; doi:10.1002/jbmr.3011.

    Google Scholar 

  19. •• Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288:20122–34. doi:10.1074/jbc.M112.441360. PTH1R signaling in osteocytes is necessary for PTH anabolic effect

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abou-Samra AB, Juppner H, Force T, Freeman MW, Kong XF, Schipani E, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992;89:2732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh AT, Gilchrist A, Voyno-Yasenetskaya T, Radeff-Huang JM, Stern PH. G alpha12/G alpha13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells. Endocrinology. 2005;146:2171–5. doi:10.1210/en.2004-1283.

    Article  CAS  PubMed  Google Scholar 

  22. Iida-Klein A, Guo J, Drake MT, Kronenberg HM, Abou-Samra AB, Bringhurst FR, et al. Structural requirements of parathyroid hormone/parathyroid hormone-related peptide receptors for phospholipase C activation and regulation of phosphate uptake. Miner Electrolyte Metab. 1995;21:177–9.

    CAS  PubMed  Google Scholar 

  23. Takasu H, Gardella TJ, Luck MD, Potts Jr JT, Bringhurst FR. Amino-terminal modifications of human parathyroid hormone (PTH) selectively alter phospholipase C signaling via the type 1 PTH receptor: implications for design of signal-specific PTH ligands. Biochemistry. 1999;38:13453–60.

    Article  CAS  PubMed  Google Scholar 

  24. Jouishomme H, Whitfield JF, Chakravarthy B, Durkin JP, Gagnon L, Isaacs RJ, et al. The protein kinase-C activation domain of the parathyroid hormone. Endocrinology. 1992;130:53–60.

    Article  CAS  PubMed  Google Scholar 

  25. Jouishomme H, Whitfield JF, Gagnon L, Maclean S, Isaacs R, Chakravarthy B, et al. Further definition of the protein kinase C activation domain of the parathyroid hormone. J Bone Miner Res. 1994;9:943–9. doi:10.1002/jbmr.5650090620.

    Article  CAS  PubMed  Google Scholar 

  26. Whitfield JF, Morley P, Willick GE, Ross V, Barbier JR, Isaacs RJ, et al. Stimulation of the growth of femoral trabecular bone in ovariectomized rats by the novel parathyroid hormone fragment, hPTH-(1-31)NH2 (Ostabolin). Calcif Tissue Int. 1996;58:81–7.

    Article  CAS  PubMed  Google Scholar 

  27. Armamento-Villareal R, Ziambaras K, Abbasi-Jarhomi SH, Dimarogonas A, Halstead L, Fausto A, et al. An intact N terminus is required for the anabolic action of parathyroid hormone on adult female rats. J Bone Miner Res. 1997;12:384–92. doi:10.1359/jbmr.1997.12.3.384.

    Article  CAS  PubMed  Google Scholar 

  28. Ogata N, Shinoda Y, Wettschureck N, Offermanns S, Takeda S, Nakamura K, et al. G alpha(q) signal in osteoblasts is inhibitory to the osteoanabolic action of parathyroid hormone. J Biol Chem. 2011;286:13733–40. doi:10.1074/jbc.M110.200196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang D, Singh R, Divieti P, Guo J, Bouxsein ML, Bringhurst FR. Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone. Bone. 2007;40:1453–61. doi:10.1016/j.bone.2007.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Sinha P, Aarnisalo P, Chubb R, Poulton IJ, Guo J, Nachtrab G, et al. Loss of Gsα in the postnatal skeleton leads to low bone mass and a blunted response to anabolic parathyroid hormone therapy. J Biol Chem. 2016;291:1631–42. doi:10.1074/jbc.M115.679753. The anabolic effect of iPTH is blunted by deletion of Gsα in osteoblasts; genetic demonstration that phospholipase C activation is not required for PTH-induced bone anabolism

  31. Meury T, Akhouayri O, Jafarov T, Mandic V, St-Arnaud R. Nuclear alpha NAC influences bone matrix mineralization and osteoblast maturation in vivo. Mol Cell Biol. 2010;30:43–53. doi:10.1128/MCB.00378-09.

    Article  CAS  PubMed  Google Scholar 

  32. Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK, et al. Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest. 2011;121:3492–504. doi:10.1172/JCI46406.

  33. Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest. 2001;107:277–86. doi:10.1172/JCI11296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bohinc BN, Gesty-Palmer D. Arrestins in bone. Prog Mol Biol Transl Sci. 2013;118:335–58. doi:10.1016/B978-0-12-394440-5.00013-9.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari SL, Pierroz DD, Glatt V, Goddard DS, Bianchi EN, Lin FT, et al. Bone response to intermittent parathyroid hormone is altered in mice null for {beta}-Arrestin2. Endocrinology. 2005;146:1854–62. doi:10.1210/en.2004-1282.

    Article  CAS  PubMed  Google Scholar 

  36. Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, et al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med. 2009;1:1ra. doi:10.1126/scitranslmed.3000071.

    Article  Google Scholar 

  37. Kao RS, Abbott MJ, Louie A, O’Carroll D, Lu W, Nissenson R. Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone. Bone. 2013;55:277–87. doi:10.1016/j.bone.2013.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, et al. Activation of protein kinase A in mature osteoblasts promotes a major bone anabolic response. Endocrinology. 2016;157:112–26. doi:10.1210/en.2015-1614.

    Article  CAS  PubMed  Google Scholar 

  39. O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One. 2008;3:e2942. doi:10.1371/journal.pone.0002942.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26:1035–46. doi:10.1002/jbmr.304.

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Wang W, Xie L, Luo X, Cao X, Wan M. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci. 2016;1364:62–73. doi:10.1111/nyas.12750.

    Article  CAS  PubMed  Google Scholar 

  42. • Li C, Xing Q, Yu B, Xie H, Wang W, Shi C, et al. Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. J Bone Miner Res. 2013;28:2094–108. doi:10.1002/jbmr.1962. Genetic demonstration that LRP6 in osteoblasts is essential for the anabolic effects of PTH

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Revollo L, Kading J, Jeong SY, Li J, Salazar V, Mbalaviele G, et al. N-cadherin restrains PTH activation of Lrp6/beta-catenin signaling and osteoanabolic action. J Bone Miner Res. 2015;30:274–85. doi:10.1002/jbmr.2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 2008;22:2968–79. doi:10.1101/gad.1702708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vinyoles M, Del Valle-Perez B, Curto J, Vinas-Castells R, Alba-Castellon L, Garcia de Herreros A, et al. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell. 2014;53:444–57. doi:10.1016/j.molcel.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  46. Yang H, Dong J, Xiong W, Fang Z, Guan H, Li F. N-cadherin restrains PTH repressive effects on sclerostin/SOST by regulating LRP6-PTH1R interaction. Ann N Y Acad Sci. 2016;1385:41–52. doi:10.1111/nyas.13221.

    Article  CAS  PubMed  Google Scholar 

  47. Acebron SP, Niehrs C. Beta-catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol. 2016;26:956–67. doi:10.1016/j.tcb.2016.07.009.

    Article  CAS  PubMed  Google Scholar 

  48. Malinauskas T, Jones EY. Extracellular modulators of Wnt signalling. Curr Opin Struct Biol. 2014;29:77–84. doi:10.1016/j.sbi.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  49. Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci. 2010;67:2551–62. doi:10.1007/s00018-010-0329-3.

    Article  CAS  PubMed  Google Scholar 

  50. Kulkarni NH, Halladay DL, Miles RR, Gilbert LM, Frolik CA, Galvin RJ, et al. Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem. 2005;95:1178–90. doi:10.1002/jcb.20506.

    Article  CAS  PubMed  Google Scholar 

  51. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92. doi:10.1038/nm.3074.

    Article  CAS  PubMed  Google Scholar 

  52. Iwaniec UT, Wronski TJ, Liu J, Rivera MF, Arzaga RR, Hansen G, et al. PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res. 2007;22:394–402. doi:10.1359/jbmr.061118.

    Article  CAS  PubMed  Google Scholar 

  53. Tian Y, Xu Y, Fu Q, He M. Parathyroid hormone regulates osteoblast differentiation in a Wnt/beta-catenin-dependent manner. Mol Cell Biochem. 2011;355:211–6. doi:10.1007/s11010-011-0856-8.

    Article  CAS  PubMed  Google Scholar 

  54. Kedlaya R, Kang KS, Hong JM, Bettagere V, Lim KE, Horan D, et al. Adult-onset deletion of β-catenin in 10kbDmp1-expressing cells prevents intermittent PTH-induced bone gain. Endocrinology. 2016;157:3047–57. doi:10.1210/en.2015-1587.

    Article  CAS  PubMed  Google Scholar 

  55. Li JY, Walker LD, Tyagi AM, Adams J, Weitzmann MN, Pacifici R. The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10b. J Bone Miner Res. 2014;29:43–54. doi:10.1002/jbmr.2044.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robinson JW, Li JY, Walker LD, Tyagi AM, Reott MA, Yu M, et al. T cell-expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment. J Bone Miner Res. 2015;30:695–705. doi:10.1002/jbmr.2394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kramer I, Keller H, Leupin O, Kneissel M. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol Metab. 2010;21:237–44. doi:10.1016/j.tem.2009.12.002.

    Article  CAS  PubMed  Google Scholar 

  58. Kramer I, Loots GG, Studer A, Keller H, Kneissel M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res. 2010;25:178–89. doi:10.1359/jbmr.090730.

    Article  CAS  PubMed  Google Scholar 

  59. Robling AG, Kedlaya R, Ellis SN, Childress PJ, Bidwell JP, Bellido T, et al. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology. 2011;152:2963–75. doi:10.1210/en.2011-0049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M. Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res. 2012;27:360–73. doi:10.1002/jbmr.1492.

    Article  CAS  PubMed  Google Scholar 

  61. • Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A. 2012;109:14092–7. doi:10.1073/pnas.1207188109. Genetic evidence that MEF2C is important for transcriptional activation of Sost in osteocytes

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res. 2007;22:1957–67. doi:10.1359/jbmr.070804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saidak Z, Le Henaff C, Azzi S, Marty C, Marie PJ. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice. J Endocrinol. 2014;223:25–33. doi:10.1530/JOE-14-0249.

    Article  CAS  PubMed  Google Scholar 

  64. Baertschi S, Baur N, Lueders-Lefevre V, Voshol J, Keller H. Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation. J Biol Chem. 2014;289:24995–5009. doi:10.1074/jbc.M114.564997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. • Wein MN, Spatz J, Nishimori S, Doench J, Root D, Babij P, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res. 2015;30:400–11. doi:10.1002/jbmr.2381. Novel osteocytic cell line that will facilitate studies of the role of osteocytes in the transduction of the PTH signal.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Parra M, Verdin E. Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol. 2010;10:454–60. doi:10.1016/j.coph.2010.04.004.

    Article  CAS  PubMed  Google Scholar 

  67. •• Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, et al. SIKs control osteocyte responses to parathyroid hormone. Nat Commun. 2016;7:13176. doi:10.1038/ncomms13176. Identifies SIK2 as important mediator of the PTH anabolic signal; HDAC4/5 double KO mice show normal anabolic response to iPTH, suggesting additional pathways

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pearman AT, Chou WY, Bergman KD, Pulumati MR, Partridge NC. Parathyroid hormone induces c-fos promoter activity in osteoblastic cells through phosphorylated cAMP response element (CRE)-binding protein binding to the major CRE. J Biol Chem. 1996;271:25715–21.

    Article  CAS  PubMed  Google Scholar 

  69. Clohisy JC, Scott DK, Brakenhoff KD, Quinn CO, Partridge NC. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells. Mol Endocrinol. 1992;6:1834–42.

    CAS  PubMed  Google Scholar 

  70. McCauley LK, Koh AJ, Beecher CA, Rosol TJ. Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate-dependent manner in osteoblastic cells. Endocrinology. 1997;138:5427–33.

    Article  CAS  PubMed  Google Scholar 

  71. Fei Y, Shimizu E, McBurney MW, Partridge NC. Sirtuin 1 is a negative regulator of parathyroid hormone stimulation of matrix metalloproteinase 13 expression in osteoblastic cells: role of sirtuin 1 in the action of PTH on osteoblasts. J Biol Chem. 2015;290:8373–82. doi:10.1074/jbc.M114.602763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yotov WV, Moreau A, St-Arnaud R. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol. 1998;18:1303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moreau A, Yotov WV, Glorieux FH, St-Arnaud R. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol. 1998;18:1312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20.

    Article  CAS  PubMed  Google Scholar 

  75. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology. Implication for Coffin-Lowry Syndrome Cell. 2004;117:387–98.

    CAS  PubMed  Google Scholar 

  76. Yoshizawa T, Hinoi E, Jung DY, Kajimura D, Ferron M, Seo J, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest. 2009;119:2807–17. doi:10.1172/JCI39366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu S, Franceschi RT, Luo M, Fan J, Jiang D, Cao H, et al. Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One. 2009;4:e7583. doi:10.1371/journal.pone.0007583.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang XJ, Gregoire S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol Cell. 2006;23:779–86.

    Article  PubMed  Google Scholar 

  79. Alonso V, Magyar CE, Wang B, Bisello A, Friedman PA. Ubiquitination-deubiquitination balance dictates ligand-stimulated PTHR sorting. J Bone Miner Res. 2011;26:2923–34. doi:10.1002/jbmr.494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shirakawa J, Harada H, Noda M, Ezura Y. PTH-induced osteoblast proliferation requires upregulation of the ubiquitin-specific peptidase 2 (Usp2) expression. Calcif Tissue Int. 2016;98:306–15. doi:10.1007/s00223-015-0083-5.

    Article  CAS  PubMed  Google Scholar 

  81. • Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res. 2011;26:2634–46. doi:10.1002/jbmr.465. As in [65], osteocytic cell line that will facilitate studies of the role of osteocytes in the transduction of the PTH signal

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work from the authors’ laboratory is supported by CIHR grant MOP-119306 to R.St-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René St-Arnaud.

Ethics declarations

Conflict of Interest

Hadla Hariri, Martin Pellicelli, and René St-Arnaud declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (McGill University Institutional Animal Care and Use Committee and Canadian Council on Animal Care).

Additional information

This article is part of the Topical Collection on Molecular Biology of Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, H., Pellicelli, M. & St-Arnaud, R. New PTH Signals Mediating Bone Anabolism. Curr Mol Bio Rep 3, 133–141 (2017). https://doi.org/10.1007/s40610-017-0060-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0060-z

Keywords

Navigation