Skip to main content

Advertisement

Log in

Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling

  • Molecular Biology of Skeletal Development (T Bellido, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review will provide a timely assessment of MAP kinase actions in bone development and homeostasis with particular emphasis on transcriptional control of the osteoblast lineage.

Recent Findings

Extracellular signal-regulated kinase (ERK) and p38 MAP kinase function as transducers of signals initiated by the extracellular matrix, mechanical loading, TGF-β, BMPs, and FGF2. MAPK signals may also affect and/or interact with other important pathways such as WNT and HIPPO. ERK and p38 MAP kinase pathways phosphorylate specific osteogenic transcription factors including RUNX2, Osterix, ATF4, and DLX5. For RUNX2, phosphorylation at specific serine residues initiates epigenetic changes in chromatin necessary for decondensation and increased transcription. MAPK also suppresses marrow adipogenesis by phosphorylating and inhibiting PPARγ, which may explain the well-known relationship between reduced skeletal loading and marrow fat accumulation.

Summary

MAPKs transduce signals from the extracellular environment to the nucleus allowing bone cells to respond to changes in hormonal/growth factor signaling and mechanical loading, thereby optimizing bone structure to meet physiological and mechanical needs of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013;29:2.1–2.17. A comprehensive review of MAPK functions in bone

    Article  CAS  Google Scholar 

  2. Wellbrock C, Arozarena I. The complexity of the ERK/MAP-kinase pathway and the treatment of melanoma skin cancer. Front Cell Dev Biol. 2016;4:33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Umbhauer M, Marshall CJ, Mason CS, Old RW, Smith JC. Mesoderm induction in Xenopus caused by activation of MAP kinase. Nature. 1995;376(6535):58–62.

    Article  CAS  PubMed  Google Scholar 

  4. Yao Y, Li W, Wu J, Germann UA, Su MS, Kuida K, et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A. 2003;100(22):12759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 1999;22(4):667–76.

    Article  CAS  PubMed  Google Scholar 

  6. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.

    Article  CAS  PubMed  Google Scholar 

  7. Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176(5):709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia [see comments]. Cell. 1997;89(5):773–9.

    Article  CAS  PubMed  Google Scholar 

  9. Matsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol. 2009;29(21):5843–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Creuzet S, Schuler B, Couly G, Le Douarin NM. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci U S A. 2004;101(14):4843–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Passos-Bueno MR, Serti Eacute AE, Jehee FS, Fanganiello R, Yeh E. Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations. Front Oral Biol. 2008;12:107–43.

    Article  PubMed  Google Scholar 

  12. Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE. 2004;2004(228):17.

    Google Scholar 

  13. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet. 2007;39(9):1145–50.

    Article  CAS  PubMed  Google Scholar 

  14. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120(7):2457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, et al. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 2009;28(14):2028–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell. 2005;121(1):101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Ting K, Bessette CM, Culiat CT, Sung SJ, Lee H, et al. Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(+/−) mice. J Bone Miner Res. 2011;26(4):777–91.

    Article  CAS  PubMed  Google Scholar 

  18. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71.

    Article  CAS  PubMed  Google Scholar 

  19. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  20. Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, et al. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem. 2000;275(12):8695–702.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem. 1998;273(49):32988–94.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol. 1997;11(8):1103–13.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000;275(6):4453–9.

    Article  CAS  PubMed  Google Scholar 

  24. Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem. 1997;272(46):29309–16.

    Article  CAS  PubMed  Google Scholar 

  25. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992;7(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  26. Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284(47):32533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akella R, Moon TM, Goldsmith EJ. Unique MAP kinase binding sites. Biochim Biophys Acta. 2008;1784(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  28. Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol. 1998;18(7):4197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem. 2002;277(39):36181–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res. 2012;27(3):538–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Ge C, Franceschi RT. Differentiation-dependent association of phosphorylated extracellular signal-regulated kinase with the chromatin of osteoblast-related genes. J Bone Miner Res. 2010;25(1):154–63.

    Article  CAS  PubMed  Google Scholar 

  33. •• Li Y, Ge C, Franceschi RT. MAP kinase-dependent RUNX2 phosphorylation is necessary for epigenetic modification of chromatin during osteoblast differentiation. J Cell Physiol. 2016. This study demonstrates that phosphorylation of RUNX2 in necessary for recruitment of chromatin modifying factors and epigenetic changes in histone necessary for induction of osteoblast-specific gene expression.

  34. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301(5634):798–802.

    Article  CAS  PubMed  Google Scholar 

  35. Shim JH, Greenblatt MB, Singh A, Brady N, Hu D, Drapp R, et al. Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice. J Clin Invest. 2012;122(1):91–106.

    Article  CAS  PubMed  Google Scholar 

  36. Boumah CE, Lee M, Selvamurugan N, Shimizu E, Partridge NC. Runx2 recruits p300 to mediate parathyroid hormone’s effects on histone acetylation and transcriptional activation of the matrix metalloproteinase-13 gene. Mol Endocrinol. 2009;23(8):1255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008;23(3):361–72.

    Article  CAS  PubMed  Google Scholar 

  38. McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in skeletal development and bone mass maintenance. Gene. 2011;474(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012;11(1):50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Meyer MB, Benkusky NA, Lee CH, Pike JW. Genomic determinants of gene regulation by 1,25-dihydroxyvitamin D3 during osteoblast-lineage cell differentiation. J Biol Chem. 2014;289(28):19539–54. This paper describes ChIP-Seq analysis of chromatin binding sites for the vitamin D receptor and their relationship to RUNX2 and C/EBP binding sites

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. •• Meyer MB, Benkusky NA, Pike JW. The RUNX2 cistrome in osteoblasts: characterization, down-regulation following differentiation, and relationship to gene expression. J Biol Chem. 2014;289(23):16016–31. This study provides a comprehensive ChIP-Seq analysis of RUNX2 binding to chromatin during osteoblast differentiation and association of RUNX2 binding with histone modifications associated with increased transcription. These sites were subsequently related to RUNX2 phosphorylation in ref. 33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Wu H, Whitfield TW, Gordon JA, Dobson JR, Tai PW, van Wijnen AJ, et al. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol. 2014;15(3):R52. The first comprehensive ChIP-Seq analysis of Runx2 binding sites is described in this study of osteoblast differentiation. Both gain and loss of sites was observed

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007;28(2):200–13.

    Article  CAS  PubMed  Google Scholar 

  44. Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet. 2004;36(7):738–43.

    Article  CAS  PubMed  Google Scholar 

  45. Lawrence MC, McGlynn K, Shao C, Duan L, Naziruddin B, Levy MF, et al. Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in beta-cells. Proc Natl Acad Sci U S A. 2008;105(36):13315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. Activated signal transduction kinases frequently occupy target genes. Science. 2006;313(5786):533–6.

    Article  CAS  PubMed  Google Scholar 

  47. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281(24):16502–11.

    Article  CAS  PubMed  Google Scholar 

  48. Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, et al. BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem. 2010;285(47):36410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park OJ, Kim HJ, Woo KM, Baek JH, Ryoo HM. FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem. 2010;285(6):3568–74.

    Article  CAS  PubMed  Google Scholar 

  50. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  51. Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL, et al. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem. 2010;285(42):31985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem. 2005;280(36):31353–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, et al. BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem. 2008;283(7):3816–26.

    Article  CAS  PubMed  Google Scholar 

  54. Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, et al. Craniofacial, vestibular and bone defects in mice lacking the distal-less-related gene Dlx5. Development. 1999;126(17):3795–809.

    CAS  PubMed  Google Scholar 

  55. Benson MD, Bargeon JL, Xiao G, Thomas PE, Kim A, Cui Y, et al. Identification of a homeodomain binding element in the bone sialoprotein gene promoter that is required for its osteoblast-selective expression. J Biol Chem. 2000;275(18):13907–17.

    Article  CAS  PubMed  Google Scholar 

  56. Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem. 1998;273(3):1496–505.

    Article  CAS  PubMed  Google Scholar 

  57. Yang X, Karsenty G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J Biol Chem. 2004;279(45):47109–14.

    Article  CAS  PubMed  Google Scholar 

  58. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for coffin-Lowry syndrome. Cell. 2004;117(3):387–98.

    Article  CAS  PubMed  Google Scholar 

  59. Elefteriou F, Benson MD, Sowa H, Starbuck M, Liu X, Ron D, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 2006;4(6):441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elefteriou F, Kolanczyk M, Schindeler A, Viskochil DH, Hock JM, Schorry EK, et al. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet Part A. 2009;149A(10):2327–38.

    Article  CAS  PubMed  Google Scholar 

  61. Wang W, Nyman JS, Ono K, Stevenson DA, Yang X, Elefteriou F. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum Mol Genet. 2011;20(20):3910–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. • Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, et al. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet. 2013;45(3):308–13. This paper describes an indirect mechanism for regulating RUNX2 activity during bone formation involving MAPK phosphorylation and nuclear export of the putative RUNX2 inhibitor, ERF. ERF mutations cause a characteristic craniosynostosis in humans

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol. 2004;24(3):1206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    Article  CAS  PubMed  Google Scholar 

  65. Shim JH, Greenblatt MB, Zou W, Huang Z, Wein MN, Brady N, et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J Clin Invest. 2013;123(9):4010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gleeson PB, Protas EJ, LeBlanc AD, Schneider VS, Evans HJ. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res. 1990;5(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  67. Krahl H, Michaelis U, Pieper HG, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med. 1994;22(6):751–7.

    Article  CAS  PubMed  Google Scholar 

  68. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.

    Article  CAS  PubMed  Google Scholar 

  69. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–53.

    Article  CAS  PubMed  Google Scholar 

  70. Knapik DM, Perera P, Nam J, Blazek AD, Rath B, Leblebicioglu B, et al. Mechanosignaling in bone health, trauma and inflammation. Antioxid Redox Signal. 2014;20(6):970–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res. 2009;24(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  72. Marie PJ, Kaabeche K. PPAR gamma activity and control of bone mass in skeletal unloading. PPAR Res. 2006;2006:64807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Minaire P, Edouard C, Arlot M, Meunier PJ. Marrow changes in paraplegic patients. Calcif Tissue Int. 1984;36(3):338–40.

    Article  CAS  PubMed  Google Scholar 

  74. Tanabe Y, Koga M, Saito M, Matsunaga Y, Nakayama K. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci. 2004;117(Pt 16):3605–14.

    Article  CAS  PubMed  Google Scholar 

  75. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007;148(5):2553–62.

    Article  CAS  PubMed  Google Scholar 

  76. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology. 2008;149(12):6065–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  78. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  79. Khatiwala CB, Kim PD, Peyton SR, Putnam AJ. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res. 2009;24(5):886–98.

    Article  CAS  PubMed  Google Scholar 

  80. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res. 2011;26(4):730–8.

    Article  CAS  PubMed  Google Scholar 

  81. Blumbach K, Niehoff A, Belgardt BF, Ehlen HW, Schmitz M, Hallinger R, et al. Dwarfism in mice lacking collagen-binding integrins alpha2beta1 and alpha11beta1 is caused by severely diminished IGF-1 levels. J Biol Chem. 2012;287(9):6431–40.

    Article  CAS  PubMed  Google Scholar 

  82. Ekholm E, Hankenson KD, Uusitalo H, Hiltunen A, Gardner H, Heino J, et al. Diminished callus size and cartilage synthesis in alpha 1 beta 1 integrin-deficient mice during bone fracture healing. Am J Pathol. 2002;160(5):1779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun Z, Guo SS, Fassler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215(4):445–56.

    Article  CAS  PubMed  Google Scholar 

  84. Young SR, Gerard-O’Riley R, Kim JB, Pavalko FM. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J Bone Miner Res. 2009;24(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  85. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem. 2004;279(29):30588–99.

    Article  CAS  PubMed  Google Scholar 

  86. Sen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J. Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem. 2009;284(50):34607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leucht P, Kim JB, Currey JA, Brunski J, Helms JA. FAK-mediated mechanotransduction in skeletal regeneration. PLoS One. 2007;2(4):e390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. •• Ge C, Cawthorn WP, Li Y, Zhao G, Macdougald OA, Franceschi RT. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARgamma transcription factors. J Cell Physiol. 2016;231(3):587–96. A lineage switching mechanism is described in this study wherein MAPK phosphorylation of RUNX2 and PPARγ transcription factors preferentially stimulates osteoblast differentiation from mesenchymal progenitors while simultaneously suppressing adipocyte formation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science. 1996;274(5295):2100–3.

    Article  CAS  PubMed  Google Scholar 

  90. van Beekum O, Fleskens V, Kalkhoven E. Posttranslational modifications of PPAR-gamma: fine-tuning the metabolic master regulator. Obesity (Silver Spring). 2009;17(2):213–9.

    Article  CAS  Google Scholar 

  91. Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, et al. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res. 2012;27:1263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Stechschulte LA, Ge C, Hinds Jr TD, Sanchez ER, Franceschi RT, Lecka-Czernik B. Protein phosphatase PP5 controls bone mass and the negative effects of rosiglitazone on bone through reciprocal regulation of PPARgamma (peroxisome proliferator-activated receptor gamma) and RUNX2 (runt-related transcription factor 2). J Biol Chem. 2016;291(47):24475–86. This paper describes a phosphatase capable of dephosphorylating both RUNX2 and PPARγ that is required for accumulation of marrow fat. Knockout of Pp5 greatly stimulates RUNX2 and PPARγ phosphorylation leading to increased bone formation and almost complete blockage of marrow fat accumulation

    Article  CAS  PubMed  Google Scholar 

  93. Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591–600.

    Article  CAS  PubMed  Google Scholar 

  94. • Hao J, Zhang Y, Wang Y, Ye R, Qiu J, Zhao Z, et al. Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal. 2014;26(2):186–91. Good general review of cellular effects of ECM stiffness on cell signaling through the cytoskeleton and YAP/TAZ factors

    Article  CAS  PubMed  Google Scholar 

  95. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26(1):54–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. • Hwang JH, Byun MR, Kim AR, Kim KM, Cho HJ, Lee YH, et al. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One. 2015;10(8):e0135519. This study establishes a connection between ECM stiffness and activation of both MAPK and YAP/TAZ factors to stimulate osteoblast differentiation

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brunner M, Jurdic P, Tuckerman JP, Block MR, Bouvard D. New insights into adhesion signaling in bone formation. Int Rev Cell Mol Biol. 2013;305:1–68.

    Article  CAS  PubMed  Google Scholar 

  99. • Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39–87. Good general review of discoidin domain receptor functions

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bargal R, Cormier-Daire V, Ben-Neriah Z, Le Merrer M, Sosna J, Melki J, et al. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet. 2009;84(1):80–4.

  101. Guo Y, Yang TL, Dong SS, Yan H, Hao RH, Chen XF, et al. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population. PLoS One. 2015;10(2):e0117102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001;2(5):446–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kano K. Marin de Evsikova C, Young J, Wnek C, Maddatu TP, Nishina PM, et al. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol. 2008;22(8):1866–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. •• Ge C, Wang Z, Zhao G, Li B, Liao J, Sun H, et al. Discoidin receptor 2 controls bone formation and marrow adipogenesis. J Bone Miner Res. 2016;31(12):2193–203. This paper describes a detailed in vivo analysis of the requirement for Ddr2 in bone formation and osteoblast differentiation

    Article  CAS  PubMed  Google Scholar 

  105. • Zhang Y, Su J, Yu J, Bu X, Ren T, Liu X, et al. An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. J Bone Miner Res. 2011;26(3):604–17. This is the first study to show that DDR2 can regulate RUNX2 activity via MAPK-dependent phosphorylation

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renny T. Franceschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Molecular Biology of Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschi, R.T., Ge, C. Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. Curr Mol Bio Rep 3, 122–132 (2017). https://doi.org/10.1007/s40610-017-0059-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0059-5

Keywords

Navigation